91 research outputs found

    F22RS SGCR 53 (SG Fee Referendum)

    Get PDF
    TO PLACE A REFERENDUM BEFORE THE LOUISIANA STATE UNIVERSITY STUDENT BODY IN THE FALL 2022 ELECTION TO AMEND THE SELF-ASSESSED STUDENT GOVERNMENT FEE TO $3.50 PER FULL TIME STUDEN

    S21RS SGR No. 19 (Indian mounds public statement)

    Get PDF
    A Resolution To urge and request Louisiana State University to make public statements discouraging people from going onto the LSU Indian Mound

    S21RS SGR No. 19 (Discouraging going on the Indian Mounds)

    Get PDF
    A Resolution To Urge and Request Louisiana State University to make public statements discouraging people from going onto the LSU Indian Mound

    F22RS SGCR No. 55 (Student Media Fee)

    Get PDF
    TO PLACE A REFERENDUM BEFORE THE LOUISIANA STATE UNIVERSITY STUDENT BODY IN THE FALL 2022 ELECTION TO INCREASE THE SELF-ASSESSED STUDENT MEDIA FEE BY $2.75 TO BE DISTRIBUTED ALL STUDENT MEDIA ENTITIE

    F22RS SGR 9 (Virtual TigerCard)

    Get PDF
    To Urge and Request Louisiana State University to implement a virtual TigerCard syste

    Midlife and Late-Life Vascular Risk Factors and White Matter Microstructural Integrity: The Atherosclerosis Risk in Communities Neurocognitive Study.

    Get PDF
    BACKGROUND: Diffusion tensor imaging measures of white matter (WM) microstructural integrity appear to provide earlier indication of WM injury than WM hyperintensities; however, risk factors for poor WM microstructural integrity have not been established. Our study quantifies the association between vascular risk factors in midlife and late life with measures of late-life WM microstructural integrity. METHODS AND RESULTS: We used data from 1851 participants in ARIC (Atherosclerosis Risk in Communities Study) who completed 3-T magnetic resonance imaging, including diffusion tensor imaging, as part of the ARIC Neurocognitive Study (ARIC-NCS). We quantified the association among lipids, glucose, and blood pressure from the baseline ARIC visit (1987-1989, ages 44-65, midlife) and visit 5 of ARIC (2011-2013, ages 67-90, late life, concurrent with ARIC-NCS) with regional and overall WM mean diffusivity and fractional anisotropy obtained at ARIC visit 5 for ARIC participants. We also considered whether these associations were independent of or modified by WM hyperintensity volumes. We found that elevated blood pressure in midlife and late life and elevated glucose in midlife, but not late life, were associated with worse late-life WM microstructural integrity. These associations were independent of the degree of WM hyperintensity, and the association between glucose and WM microstructural integrity appeared stronger for those with the least WM hyperintensity. There was little support for an adverse association between lipids and WM microstructural integrity. CONCLUSIONS: Hypertension in both midlife and late life and elevated glucose in midlife are related to worse WM microstructural integrity in late life

    Central arterial stiffness is associated with structural brain damage and poorer cognitive performance: The ARIC study

    Get PDF
    Background Central arterial stiffening and increased pulsatility, with consequent cerebral hypoperfusion, may result in structural brain damage and cognitive impairment. Methods and Results We analyzed a cross‐sectional sample of ARIC‐NCS(Atherosclerosis Risk in Communities–Neurocognitive Study) participants (aged 67–90 years, 60% women) with measures of cognition (n=3703) and brain magnetic resonance imaging (n=1255). Central arterial hemodynamics were assessed as carotid‐femoral pulse wave velocity and pressure pulsatility (central pulse pressure). We derived factor scores for cognitive domains. Brain magnetic resonance imaging using 3‐Tesla scanners quantified lacunar infarcts; cerebral microbleeds; and volumes of white matter hyperintensities, total brain, and the Alzheimer disease signature region. We used logistic regression, adjusted for demographics, apolipoprotein E ɛ4, heart rate, mean arterial pressure, and select cardiovascular risk factors, to estimate the odds of lacunar infarcts or cerebral microbleeds. Linear regression, additionally adjusted for intracranial volume, estimated the difference in log‐transformed volumes of white matter hyperintensities, total brain, and the Alzheimer diseasesignature region. We estimated the mean difference in cognitive factor scores across quartiles of carotid‐femoral pulse wave velocity or central pulse pressure using linear regression. Compared with participants in the lowest carotid‐femoral pulse wave velocity quartile, participants in the highest quartile of carotid‐femoral pulse wave velocity had a greater burden of white matter hyperintensities (P=0.007 for trend), smaller total brain volumes (−18.30 cm 3 ; 95% CI, −27.54 to −9.07 cm 3 ), and smaller Alzheimer disease signature region volumes (−1.48 cm 3 ; 95% CI, −2.27 to −0.68 cm 3 ). These participants also had lower scores in executive function/processing speed (ÎČ=−0.04 z score; 95% CI, −0.07 to −0.01 z score) and general cognition (ÎČ=−0.09 z score; 95% CI, −0.15 to −0.03 z score). Similar results were observed for central pulse pressure. Conclusions Central arterial hemodynamics were associated with structural brain damage and poorer cognitive performance among older adults

    Parallel imaging: is GRAPPA a useful acquisition tool for MR imaging intended for volumetric brain analysis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The work presented here investigates parallel imaging applied to T1-weighted high resolution imaging for use in longitudinal volumetric clinical studies involving Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI) patients. This was in an effort to shorten acquisition times to minimise the risk of motion artefacts caused by patient discomfort and disorientation. The principle question is, "Can parallel imaging be used to acquire images at 1.5 T of sufficient quality to allow volumetric analysis of patient brains?"</p> <p>Methods</p> <p>Optimisation studies were performed on a young healthy volunteer and the selected protocol (including the use of two different parallel imaging acceleration factors) was then tested on a cohort of 15 elderly volunteers including MCI and AD patients. In addition to automatic brain segmentation, hippocampus volumes were manually outlined and measured in all patients. The 15 patients were scanned on a second occasion approximately one week later using the same protocol and evaluated in the same manner to test repeatability of measurement using images acquired with the GRAPPA parallel imaging technique applied to the MPRAGE sequence.</p> <p>Results</p> <p>Intraclass correlation tests show that almost perfect agreement between repeated measurements of both segmented brain parenchyma fraction and regional measurement of hippocampi. The protocol is suitable for both global and regional volumetric measurement dementia patients.</p> <p>Conclusion</p> <p>In summary, these results indicate that parallel imaging can be used without detrimental effect to brain tissue segmentation and volumetric measurement and should be considered for both clinical and research studies where longitudinal measurements of brain tissue volumes are of interest.</p
    • 

    corecore