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INTRODUCTION—The impact of blood pressure on brain volumes may be time- or pattern-

dependent.

METHODS—In 1678 participants from the Atherosclerosis Risk in Communities Neurocognitive 

Study, we quantified the association between measures and patterns of blood pressure over three 

time points (~24 or ~15 years prior and concurrent with neuroimaging) with late life brain 

volumes.

RESULTS—Higher diastolic blood pressure ~24 years prior, higher systolic and pulse pressure 

~15 years prior, and consistently elevated or rising systolic blood pressure from ~15 years prior to 

concurrent with neuroimaging, but not blood pressures measured concurrent with neuroimaging, 

were associated with smaller volumes. The pattern of hypertension ~15 years prior and 

hypotension concurrent with neuroimaging was associated with smaller volumes in regions 

preferentially affected by Alzheimer’s disease (e.g., hippocampus: −0.27 standard units, 95%CI:

−0.51,−0.03).

DISCUSSION—Hypertension 15 to 24 years prior is relevant to current brain volumes. 

Hypertension followed by hypotension appears particularly detrimental.
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1. INTRODUCTION

Elevated blood pressure in midlife appears to confer excess risk of cognitive impairment [8, 

9] while associations with elevated late life blood pressure are typically null or protective.[8, 

10] This finding appears attributable, at least in part, to differences in the timing or duration 

of elevated blood pressure relative to cognitive assessment.[11] Additionally, the pattern of 

blood pressure over the life-course may be more informative than blood pressure at any 

single time point.[6, 11] As declining brain volume due to neurodegeneration occurs in 

dementia and may precede clinically noticeable change in cognition,[12–14] understanding 

how life-course blood pressure is related to brain volumes may provide mechanistic insights 

and has implications for treatment decisions. Our objective was to evaluate the relation 

between life-course blood pressure, including patterns of blood pressure, with brain volumes 

in late life (i.e. age ≥65) in the Atherosclerosis Risk in Communities Neurocognitive Study 

(ARIC-NCS).

2. METHODS

2.1 STUDY POPULATION

The Atherosclerosis Risk in Communities (ARIC) study recruited persons ages 45 to 65 in 

1987–1989 from four United States communities: Minneapolis suburbs, Minnesota; Forsyth 

County, North Carolina; Washington County, Maryland; and Jackson, Mississippi. We 

consider information on blood pressure from three study visits spaced at intervals of 

approximately a decade: Visit 1, 1987–1989; Visit 4, 1996–1998; and Visit 5, 2011–2013. 

(We do not consider blood pressure data from Visit 2 (1990–1992) or Visit 3 (1993–1995) to 
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limit the number of comparisons.) A sample of Visit 5 participants lacking contraindications 

for MRI, all of whom were over age 65, were invited to complete brain MRI at Visit 5 as 

part of ARIC-NCS. In accordance with the pre-specified sampling strategy, all Visit 5 

participants with evidence of cognitive impairment or a previous ARIC study brain MRI and 

a stratified random sample of the remaining participants, with strata based on age and study 

site, were invited to complete MRI. In addition to excluding persons without relevant MRI 

data or complete blood pressure and covariate data, we excluded persons with multiple 

sclerosis, brain tumor, surgery/radiation to the head, or confirmed stroke (n=82), participants 

who were not black or white (n=6), and black participants from Minnesota or Maryland 

(n=9). This study was approved by the institutional review boards of all participating 

institutions. All subjects provided written informed consent to participate at each study visit.

2.2 BLOOD PRESSURE

At each visit, study personnel measured systolic and diastolic blood pressure (SBP and 

DBP) up to three times according to a standardized protocol; we used the mean of the two 

final measurements. Antihypertensive medication use was determined through visual 

inspection of medications and linkage to Medi-Span Therapeutic Classification codes.

We considered those with SBP≥140 mmHg or DBP≥90 mmHg, antihypertensive medication 

use, or self-report of physician diagnosed hypertension at the current or any past study visit 

as having a “history of hypertension.” In addition to considering measured SBP, DBP, and 

pulse pressure (PP, defined as SBP minus DBP) as continuous variables, we also classified 

persons as hypotensive (SBP<90 mmHg or DBP<60 mmHg), hypertensive (≥140 mmHg 

SBP or ≥90 mmHg DBP in the absence of hypotension), or normotensive (the absence of 

hyper- or hypotension) at each study visit.

We further derived summaries of blood pressure patterns, including within-person change in 

SBP, DBP and PP across pairs of study visits (Visit 1 to 5, Visit 1 to 4, Visit 4 to 5) and a 

six-category variable describing the pattern of measured blood pressure across each pair of 

visits (hypotensive or normotensive/hypertensive at the earlier visit by hypotensive/

normotensive/hypertensive at the later visit).

2.3 BRAIN VOLUMES

3T brain MRIs were completed following identical protocols at each study center. Each 

center underwent a qualifying process and phantom scans were completed bi-monthly and 

after upgrades. All scans included a sagittal T1-weighted 3D volumetric Magnetization 

Prepared Gradient Echo (MPRAGE) pulse sequence, allowing quantification of brain 

volumes. The ARIC MRI Reading Center used Freesurfer (version 5.1) to measure grey 

matter volumes. We report on associations with total brain volume, lobar grey matter 

volumes (frontal, parietal, temporal, occipital), total volume of the deep grey structures 

(insula, thalamus, caudate, putamen, and pallidum), total combined volume of the 

parahippocampal, entorhinal, and inferior parietal lobules, hippocampus, precuneus, and 

cuneus (denoted as the Alzheimer’s Disease (AD) signature region)[15] and hippocampal 

volume.
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2.4 COVARIATES

We used data obtained at Visits 1, 4, and 5/ARIC-NCS to define covariates. We calculated 

body mass index (BMI) as measured weight (kg) divided by the square of measured height 

(m) and mean arterial pressure (MAP) as 2/3 DBP + 1/3 SBP. We defined 

hypercholesterolemia as measured total cholesterol of >200 mg/dL and diabetes as self-

reported diagnosis, ≥126 mg/dL fasting glucose, ≥200 mg/dL non-fasting glucose, or use of 

diabetes medications. The ARIC MRI Reading Center used in-house algorithms to estimate 

total brain and intracranial volume.[16] We defined all other covariates based on information 

recorded about the study visit alone or in combination with information provided via self-

report.

2.5 STATISTICAL ANALYSES

We used separate weighted linear regression models to quantify the association between 

each of our blood pressure and z-scored MRI brain volume measures. Sampling weights 

were used to account for the stratified random sampling approach used to select Visit 5 

participants for MRI; thus we estimate the association in the Visit 5 ARIC participant 

population. All analyses were adjusted for potential confounders, including both time-

invariant confounders --gender, education (<12/12–16/>16 years), race/center (black in 

Jackson/black in Forsyth County/white in Forsyth County/white in Minneapolis/white in 

Washington County), estimated total intracranial volume and its interaction with gender -- 

and confounders that vary over time --body mass index (BMI, <25/25 to <30/≥30 kg/m2), 

diabetes, smoking status (current/former/never), hypercholesterolemia, and (excluding 

analyses considering history of hypertension) antihypertensive medication use. Time-varying 

confounders were assessed at the appropriate study visit for analyses of visit-specific blood 

pressure (e.g., Visit 4 values if considering Visit 4 SBP). For analyses of patterns of blood 

pressure, exploratory analyses provided no support for the presence of time-varying 

confounding[17]; therefore, we adjusted for time-varying confounders by adjusting for 

status at multiple time points (e.g., both Visit 1 and Visit 5 smoking status if considering 

change in SBP from Visit 1 to 5). Analyses of within-person change in blood pressure were 

additionally adjusted for starting blood pressure. To isolate the impact of PP, given that 

higher blood pressure is associated with greater PP, analyses of PP were additionally 

adjusted for MAP, and analyses of change in PP were adjusted for change in MAP. All 

continuous explanatory variables were modeled using linear terms. We did not correct for 

multiple comparisons in these primary analyses because the association of blood pressure 

with one imaging feature is likely correlated with other imaging features.

We conducted multiple sensitivity analyses. To evaluate sensitivity to our exclusion criteria, 

we repeated our analyses (a) allowing participants with less than complete blood pressure 

data to contribute data, and (b) including persons with stroke. We also repeated our analyses 

omitting use of sampling weights to understand the influence of the sampling strategy. 

Finally, we derived and applied inverse probability of attrition weights (IPAW)[11, 18, 19] to 

address potential selection bias due to attrition from ARIC Visit 1 to Visit 5 (see 

Supplemental Methods). In combination with the sampling weights, the IPAW weighted 

estimates are designed to recover the association that would have been observed under either 

(i) no loss-to-follow-up (i.e. full follow-up for all living participants) or (ii) attrition that is 
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statistically independent of blood pressure (i.e., full follow-up for all living participants and 

a random mechanism accounting for who dies), under the assumptions that death and drop-

out are missing at random conditional on observed data and that the weights models are 

correctly specified.

We considered effect modification by race, age, and gender for all analyses and by 

antihypertensive medication use (overall, and by class of medication – angiotension-

converting enzyme inhibitors/angiotension II receptor blockers, beta blockers, calcium 

channel blockers, and diuretics, when the prevalence of use was >5%) for analyses of visit-

specific measured blood pressure using multiplicative interaction terms. We evaluated 

support for effect modification using Benjamini-Hochberg corrected p-values,[20] allowing 

a false discovery rate of 5%. Throughout we consider p<0.05 to be significant and p<0.10 to 

be marginally significant and report 95% confidence intervals. All analyses were completed 

using SAS, Version 9.3 or R, Version 3.0.1.

3. RESULTS

The study sample included up to 1687 participants. The weighted sample population was 

predominately female (61%) and well-educated (11% with less than a high school diploma 

or equivalent certification, 48% with a college degree); 31% were white from Minneapolis, 

28% were white from Washington County, 21% were white and 1% were black from Forsyth 

County, and 19% were black from Jackson. Table 1 details additional sample characteristics 

while blood pressure patterns are described in Table 2 (unweighted versions of Tables 1 and 

2 are provided as appendix Tables A.1 and A.2).

3.1 HISTORY OF HYPERTENSION

A history of hypertension at any study visit was related to smaller parietal and frontal lobe 

cortical volumes in late life (Figure 1; appendix Table A.3). A history of hypertension at 

either Visit 1 or Visit 5, but not Visit 4, was associated with smaller temporal lobe and AD 

signature region volumes (total combined volume of the parahippocampal, entorhinal, and 

inferior parietal lobules, hippocampus, precuneus, and cuneus). A history of hypertension at 

Visit 5, concurrent with neuroimaging, appeared associated with smaller total brain volumes, 

while a history of hypertension at Visit 1, ~24 years prior, was marginally associated with 

smaller hippocampal volumes.

3.2 MEASURED BLOOD PRESSURE

3.2.1 Blood Pressure ~24 Years Prior to Neuroimaging (Visit 1)—Higher SBP at 

Visit 1, ~24 years prior to neuroimaging, was significantly associated with smaller parietal 

lobe volumes and marginally associated with smaller AD signature region volumes, but was 

not associated with other late life volumes (Figure 1; appendix Table A.4). Higher DBP at 

Visit 1 was significantly or marginally associated with smaller volumes in late life for all 

regions except the deep grey matter and hippocampus. Greater Visit 1 PP was associated 

with larger frontal, occipital, and temporal lobe cortical volumes.
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3.2.2 Blood Pressure ~15 Years Prior to Neuroimaging (Visit 4)—Higher SBP at 

Visit 4, ~15 years prior to neuroimaging, was significantly or marginally associated with 

smaller brain volumes in almost all regions; there was no association with hippocampal 

volume and higher Visit 4 SBP was marginally associated with larger deep grey matter 

volumes (Figure 1; appendix Table A.4). Higher DBP at Visit 4 was associated with smaller 

AD signature region and temporal, parietal, and occipital lobe cortical volumes. Visit 4 PP 

was not associated with volumes.

3.2.3 Blood Pressure Concurrent with Neuroimaging (Visit 5)—There was little 

support for an association between measures of blood pressure at the time of neuroimaging 

(Visit 5) and late life brain volumes, with a few exceptions (Figure 1; appendix Table A.4).

3.3 HYPERTENSION AND HYPOTENSION

Associations between categories of measured blood pressure and brain volumes were 

generally consistent with expectations given the findings considering SBP and DBP 

separately (Figure 1, appendix Table A.5). At Visit 1, ~24 years prior to neuroimaging, 

hypotension was associated with larger late life total brain volumes and parietal lobe cortical 

volumes, while hypertension was marginally associated with smaller hippocampal volumes. 

At Visit 4, ~15 years prior to neuroimaging, hypotension was associated with larger parietal 

lobe and AD signature region volumes as well as smaller deep grey volumes, while 

hypertension was associated with smaller total brain, temporal lobe, AD signature region, 

and hippocampal volumes. With the exception of an association between concurrent 

hypertension and smaller frontal lobe volumes, categories of blood pressure assessed 

concurrent with neuroimaging (Visit 5) were not associated with brain volumes.

3.4 WITHIN-PERSON CHANGE IN BLOOD PRESSURE

Higher SBP at Visit 4 relative to Visit 1 (i.e., at ~15 years prior relative to ~24 years prior to 

neuroimaging) was significantly associated with smaller total brain, AD signature region, 

and temporal, parietal, and occipital lobe cortical volumes (Figure 2; appendix Table A.6). 

Positive within-person change in DBP from Visit 1 to Visit 4 was associated with smaller 

temporal lobe and AD signature region volumes. Change in PP from Visit 1 to Visit 4 was 

not associated with volumes. Change in blood pressure from Visit 1 or Visit 4 to the time of 

neuroimaging (Visit 5) was not associated with volumes, with a few exceptions (Figure 2; 

appendix Table A.6).

3.5 PATTERNS OF MEASURED BLOOD PRESSURE OVER TIME

3.5.1 Categorical Patterns from ~24 to ~15 Years Prior to Neuroimaging (Visit 1 
to 4)—Persons who were hypertensive at both Visit 1 and Visit 4 (~24 and ~15 years prior 

to neuroimaging) or newly hypertensive at Visit 4 (~15 years prior to neuroimaging) 

exhibited significantly or marginally smaller late life temporal lobe, AD signature region, 

and hippocampal volumes compared to those with “normal” blood pressure throughout 

(Figure 3a; appendix Table A.7). Being hypertensive at both time points was also 

significantly associated with smaller deep grey volumes, while being newly hypertensive 

was marginally associated with larger deep grey volumes. Being newly hypertensive at Visit 

4 was also significantly associated with smaller total brain volumes. The pattern of Visit 1 
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normo- or hypotension with Visit 4 hypotension was significantly associated with greater 

parietal lobe and AD signature region volumes but smaller deep grey volumes.

3.5.2 Categorical Patterns from ~15 Years Prior to Concurrent with 
Neuroimaging (Visit 4 to 5)—Hypertension ~15 years prior to neuroimaging (Visit 4) 

followed by hypotension at the time of neuroimaging (Visit 5) was strongly associated with 

smaller temporal lobe, AD signature region, and hippocampal volumes compared to those 

with “normal” blood pressure throughout (Figure 3b; appendix Table A.7). Participants who 

were hypertensive at both Visit 4 and Visit 5 also had smaller temporal and frontal lobe 

volumes. There was marginal support for smaller total brain volumes in participants who 

were hypertensive at Visit 4 but normotensive at Visit 5.

3.5.3 Categorical Patterns from ~24 Years Prior to Concurrent with 
Neuroimaging (Visit 1 to 5)—There was no evidence to support a difference in late life 

volumes among those with alternate patterns of blood pressure status from Visit 1 to 5 those 

with “normal” blood pressure throughout, with two exceptions: a significant association 

between normo- or hypotension at Visit 1, ~24 years prior to neuroimaging, followed by 

hypertension at Visit 5, concurrent with neuroimaging, and smaller frontal lobe volumes and 

a marginally significant association between hypertension at Visit 1 with normotension at 

Visit 5 and smaller deep grey volumes (appendix Table A.7).

3.6 SENSITIVITY ANALYSES AND EFFECT MODIFICATION

All sensitivity analyses were consistent with primary analyses. There was no support for 

effect modification by any considered characteristic (all corrected p-values >0.05).

4. DISCUSSION

In our study, blood pressure status 15 to 24 years prior appears most relevant to current 

amount of brain atrophy. Specifically, diastolic hypotension ~24 years prior to neuroimaging 

appeared associated with larger late life brain volumes, while elevated blood pressure ~15 

years prior, particularly higher SBP, appeared associated with smaller late life volumes.

Our analyses of patterns of blood pressure suggested that controlling SBP may preserve 

brain volumes one to two decades later, as rising SBP and being hypertensive from ~24 

years prior to ~15 years prior or being newly hypertensive ~15 years prior were associated 

with smaller late life brain volumes. Interestingly, compared to persons with normal blood 

pressure throughout, hypertension ~ 15 years earlier followed by hypotension at the time of 

neuroimaging was associated with substantially smaller volumes in regions affected early in 

Alzheimer’s disease.[21]

Strengths of this study include life-course information on blood pressure and a large sample 

with brain MRI. Our focus on measured blood pressure is also a strength, as our study 

provides insight into the effects of achieving specific blood pressure targets. However, this 

can be viewed as a limitation given that we make the assumption that antihypertensive 

treatments act only or mostly through changing blood pressure, and thus we avoid the 

complexity of quantifying the effect of treatments and ignore the fact that standard of care 
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changed over the study period. While lack of effect modification by antihypertensive 

medication class provides reassurance that this approach is reasonable, we acknowledge that 

we have not formally tested this assumption in our data. While confounding, 

misclassification, or selection bias cannot be completely discounted, we do not believe they 

account for our non-null findings; we adjusted for relevant confounders, non-differential 

measurement error would likely bias towards the null, and sensitivity analyses addressing 

selection, which assume the data are missing at random conditional on known predictors of 

death and drop-out, were consistent with the primary analyses. Study limitations include our 

inability to consider within-individual change in brain volumes and limited power to detect 

effect modification.

Our findings extend the work of others on the association between life-course blood pressure 

and late life brain volumes through use of a comprehensive assessment of life-course blood 

pressure over an extended period and consideration of both broad and targeted brain regions. 

For example, in prior work in ARIC considering a smaller group of participants with MRI 

earlier in life, elevated SBP six years prior to MRI was associated with greater qualitative 

ratings of ventricular size; the association with concurrent SBP was similar but only 

marginally significant.[1] Conversely, concurrent hypertension was associated with greater 

qualitative ratings of sulcal size, but blood pressure six years prior to MRI was not.[1] 

Higher baseline SBP was associated with increases in ventricular and sulcal size over 

approximately 10 years of follow-up in ARIC participants with serial MRI, while higher 

DBP appeared to protect against increases in ventricular size.[2] In a subset of Rotterdam 

Study participants, persons using antihypertensive medications at both 5 years prior to and at 

the time of MRI, a proxy for longstanding hypertension, exhibited smaller hippocampal and 

amygdalar volumes compared to those without antihypertensive medication use.[3] 

Interestingly, elevated DBP five years prior to MRI was associated with smaller 

hippocampal volumes in those without antihypertensive medication use, while higher DBP 

at the time of MRI predicted greater amygdalar volumes; SBP was not associated with 

volumes.[3] In additional analyses using the Rotterdam cohort, baseline DBP, but not SBP, 

predicted faster declines in left hippocampal volume over approximately 10 years of follow-

up.[4] Several studies report an association between midlife hypertension, in the range of 

assessed approximately 22–30 years prior to neuroimaging, and smaller late life brain 

volumes.[22–24] However, in the Framingham Offspring Cohort Study, midlife hypertension 

was not associated with change in total brain volume or temporal horn volume (a surrogate 

for hippocampal volume) over a period approximately 7–13 years later.[5]

Notably, our results on patterns of blood pressure are consistent with AGES-Reykjavik 

Study findings,[6] where lower late life DBP was associated with smaller total brain and 

grey matter volumes only in persons with a history of midlife hypertension. However, our 

results differ somewhat from those of the Rotterdam Scan Study,[7] where both high and 

low concurrent DBP, elevated midlife DBP in those without antihypertensive medication 

use, and 20-year within-person declines in DBP were associated with greater cortical 

atrophy, while there was little association with any measure of SBP.

Multiple theories may explain the finding that hypotension, when preceded by hypertension 

~15 years prior, is associated with substantially smaller brain volumes in Alzheimer’s 
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disease-related regions. Longstanding hypertension can shift the cerebral autoregulatory 

curve, leading to reduced cerebral blood flow at (relatively) lower pressures[25–27]; 

therefore, hypotension, possibly induced by overly aggressive blood pressure treatment, may 

lead to periods of ischemia and associated neurodegeneration.[28] (Note, 97% of persons 

with this pattern were taking antihypertensives in late life.) Second, areas of the brain that 

are particularly vulnerable to AD pathology (especially tauopathy) may be selectively 

vulnerable to a variety of insults. Third, poor health may lead to reductions in both blood 

pressure and brain volume. (However, of persons with this pattern, only 2% had coronary 

heart failure and 8% had coronary heart disease.) Finally, atrophy (particularly of the insula) 

might lead to autonomic dysfunction and reduced blood pressure (i.e. reverse causation).[29]

In light of the findings of the Systolic Blood Pressure Intervention Trial (SPRINT)[30], 

clinicians are likely to lower blood pressure targets for many patients. While our study 

suggests this is unlikely to confer excess harm, and may ultimately confer substantial benefit 

for most individuals, our results also suggest that caution may be warranted when pursuing 

lower targets in persons with long-standing hypertension when treatment substantially 

lowers DBP. Given the short study period, as with prior trials,[31, 32] the SPRINT Memory 

and Cognition In Decreased Hypertension (SPRINT-MIND) study will only be able to 

comment on whether short-term intensive blood pressure lowering results in a common, 

immediate harm or benefit. Thus, future epidemiologic work investigating the long-term 

impact of specific patterns of life-course blood pressure, as well as the impact of life-course 

treatment, are clearly warranted.

In summary, our study highlights the potential benefit of effective screening and subsequent 

treatment for hypertension from the time of onset forward on brain health. It also supports a 

“personalized medicine” approach to blood pressure management incorporating information 

on prior blood pressure history and the potential for harm due to diastolic hypotension in the 

chronically hypertensive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AD Alzheimer’s disease

ARIC Atherosclerosis Risk in Communities study

ARIC-NCS Atherosclerosis Risk in Communities Neurocognitive Study

BMI body mass index

DBP diastolic blood pressure

IPAW inverse probability of attrition weighting

MAP mean arterial pressure

MPRAGE Magnetization Prepared Gradient Echo

MRI magnetic resonance imaging

PP pulse pressure

SBP systolic blood pressure
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RESEARCH IN CONTEXT

Systematic review

We searched PUBMED to identify relevant studies. [1–7] Very few studies have 

considered the influence of patterns of blood pressure over time on brain volumes. [6, 7]

Interpretation

Our study provides a comprehensive picture of the association between blood pressure 

and patterns of blood pressure over the life-course on brain volumes. We found 

hypertension 15 to 24 years prior to neuroimaging to be most relevant to current brain 

volumes. Our study also suggests that the pattern of hypertension followed by 

hypotension may be particularly detrimental.

Future directions

Our study highlights the potential benefit on brain health of effective screening and 

subsequent treatment for hypertension from the time of onset forward. However, it also 

provides support for a “personalized medicine” approach to blood pressure management 

that incorporates information on prior blood pressure history and sensitivity to diastolic 

hypotension.
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Figure 1. P-value heatmap of adjusted average difference in brain volumes in late life for a given 
contrast in measured blood pressure at each study visit
Each square contains the beta coefficient, in SD units, corresponding to a given exposure-

outcome analysis. Squares containing statistically significant associations are shaded in red 

(if negative) or green (if positive), while squares containing marginally significant 

associations are shaded in orange (if negative) or light green (if positive). Unshaded squares 

denote p-values >0.10. All analyses were weighted to account for sampling and adjusted for 

gender, race-center, education, age, estimated intracranial volume, BMI, diabetes, high 

cholesterol, smoking status, and gender*estimated intracranial volume. All analyses 

exclusive of those considering history of hypertension were also adjusted for 

antihypertensive medication use and analyses of pulse pressure were additionally adjusted 

for mean arterial pressure.
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Figure 2. P-value heatmap of adjusted average difference in brain volumes in late life for a given 
within-person change in measured blood pressure across study visits
Each square contains the beta coefficient, in SD units, corresponding to a given exposure-

outcome analysis. Squares containing statistically significant associations are shaded in red 

(if negative) or green (if positive), while squares containing marginally significant 

associations are shaded in orange (if negative) or light green (if positive). Unshaded squares 

denote p-values >0.10. Analyses were weighted to account for sampling and adjusted for 

gender, race-center, education, age, estimated intracranial volume, BMI, diabetes, high 

cholesterol, smoking status, antihypertensive medication use, starting blood pressure value, 

gender*estimated intracranial volume, and (pulse pressure only) within-person change in 

mean arterial pressure.
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Figure 3. Adjusted average difference in brain volumes in late life for a given pattern of blood 
pressure
Panel A illustrates associations with patterns from Visit 1 (~24 years prior to neuroimaging) 

to Visit 4 (~15 years prior to neuroimaging) while panel B illustrates associations with 

patterns from Visit 4 (~15 years prior to neuroimaging) to Visit 5 (concurrent with 

neuroimaging). The reference category is those with earlier normo-or hypotension and later 

normotension. Analyses were weighted to account for sampling and adjusted for gender, 

race-center, education, age, estimated intracranial volume, BMI, diabetes, high cholesterol, 

smoking status, antihypertensive medication use, and gender*estimated intracranial volume.
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Table 1

Weighted* time-varying characteristics and late life brain volumes of eligible ARIC-NCS participants

Visit 1(~24
years prior to

MRI)

Visit 4 (~15
years prior to

MRI)

Visit 5
(Concurrent with

MRI)

Mean (25th, 75th percentile) or %

Time to MRI (years) 24 (23, 24) 15 (14, 15) 0 (0, 0)

Age (years) 52 (47, 55) 61 (56, 64) 75 (70, 79)

Body mass index

  Normal 40% 28% 28%

  Overweight 38% 40% 40%

  Obese 22% 33% 33%

Smoking status

  Current 16% 9% 5%

  Former 32% 47% 51%

  Never 52% 43% 44%

Diabetes 4% 10% 31%

Hypercholesterolemia 58% 50% 35%

Systolic blood pressure (mmHg) 115 (103, 122) 123 (111, 132) 130 (117, 140)

Diastolic blood pressure (mmHg) 72 (65, 78) 71 (64, 77) 66 (58, 72)

Pulse pressure (mmHg) 43 (35, 48) 52 (42, 59) 64 (54, 72)

History of hypertension 31% 53% 81%

Antihypertensive medication use 19% 32% 72%

  Beta blockers** 6% 8% 29%

  Calcium channel blockers** 2% 9% 22%

  ACE Inhibitors/ARBs** 2% 11% 44%

  Diuretics** 12% 14% 40%

Measured blood pressure

  Hypotensive 9% 11% 28%

  Normotensive 83% 73% 49%

  Hypertensive 8% 16% 23%

Estimated intracranial volume (cm3) -- -- 1387 (1275, 1488)

Total brain volume (cm3) -- -- 1026 (949, 1099)

Temporal lobe cortical volume (cm3) -- -- 103 (96, 111)

Parietal lobe cortical volume (cm3) -- -- 108 (99, 116)

Occipital lobe cortical volume (cm3) -- -- 41 (38, 45)

Frontal lobe cortical volume (cm3) -- -- 152 (141, 162)

Deep grey matter (cm3) -- -- 43 (40, 45)

AD signature region volume (cm3) -- -- 60 (55, 64)

Abbreviations: ACE, angiotension-converting enzyme; AD, Alzheimer’s disease; ARB, angiotension receptor blockers; ARIC-NCS 
Atherosclerosis Risk in Communities Neurocognitive Study
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*
Weighting was used to account for the sampling strategy used to select Visit 5 participants for MRI.

**
Not mutually exclusive
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Table 2

Weighted* time-varying patterns of measured blood pressure among eligible ARIC-NCS participants

Visit 1
to Visit 4

(~24 to ~15
years prior to

MRI)

Visit 4
to Visit 5 (~15
years prior to

concurrent
with MRI)

Visit 1 to
Visit 5 (~24

years to
concurrent
with MRI)

Mean (25th, 75th percentile) or %

Within-person change in mmHg:

  Systolic blood pressure 8 (−1, 16) 7 (−7, 19) 15 (2, 27)

  Diastolic blood pressure −1 (−8, 4) −5 (−13, 2) −6 (−14, 2)

  Pulse pressure 10 (1, 16) 12 (2, 21) 21 (12, 29)

Pattern of Measured Blood Pressure

    Hypertensive to Hypotensive <1% 4% 2%

    Normo/hypotensive to Hypotensive 10% 24% 26%

    Hypertensive to Normotensive 4% 6% 3%

    Normo/hypotensive to Normotensive 70% 43% 45%

    Always Hypertensive 4% 6% 3%

    Normo/hypotensive to Hypertensive 11% 17% 20%

Abbreviations: ARIC-NCS Atherosclerosis Risk in Communities Neurocognitive Study

*
Weighting was used to account for the sampling strategy used to select Visit 5 participants for MRI.
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