46 research outputs found

    Clinical efficacy of nab-paclitaxel in patients with metastatic pancreatic cancer

    Get PDF
    Purpose: Pancreatic carcinoma is the neoplasia with the major mortality, and main standard treatments in this cancer increase survival but do not lead to complete recovery of the patient. The aim of this study was to evaluate the efficacy of Abraxane® (nab-paclitaxel) in Italian patients with metastatic pancreatic cancer (MPC). Patients and methods: We conducted a retrospective analysis of 80 patients. Overall survival (OS) was the primary end point for evaluating the efficacy of nab-paclitaxel in combination with gemcitabine treatment, while carbohydrate antigen 19-9 (CA 19-9) reduction, safety, progression-free survival (PFS), overall response rate and reduction in pain were secondary end points. Results: The median OS was 8 months, and the median PFS was 5 months. A considerable difference in CA 19-9 before and after treatment was observed. Descriptive and correlation analyses were done to examine the relationship between CA 19-9 response and OS. Linear regression analysis between OS and CA 19-9 response revealed that CA 19-9 is an important predictor of OS, showing a positive correlation. Conclusion: Nab-paclitaxel is a well-tolerated and effective treatment for patients affected by MPC. The drug showed an improved tolerability profile, significant pain relief and an increase in survival rate

    A narrative review on the implementation of liquid biopsy as a diagnostic tool in thoracic tumors during the COVID-19 pandemic

    Get PDF
    Objective: In this review, we evaluate the role of liquid biopsy in managing lung cancer patients during the still ongoing coronavirus disease 2019 (COVID-19) healthcare emergency. Background: The novel influenza coronavirus (severe acute respiratory syndrome coronavirus or SARSCoV-2) has upended several aspects of our lives, including medical activities. In this setting, many routine cancer diagnostic and therapeutic procedures have been suspended, leading to delays in diagnosis, treatments, and, ultimately, increases in cancer mortality rates. Equally drastic has been the impact of COVID-19 on clinical trials, many of which have been stalled or have never begun. This has left many patients who were hoping to receive innovative treatments in a limbo. Although, as of today, the introduction of drastic security measures has been crucially important to contain the pandemic, one cannot ignore the need to continue providing chronically ill patients all the health care they need, in terms of detection, prevention, and treatment. In these unprecedented times, liquid biopsy, more than ever before, may play a relevant role in the adequate management of these frail patients. Methods: we performed a deep analysis of the recent international literature published in English on PUBMED in the last six months focused on the impact of SARS-CoV-2 on the management of lung cancer patients, focusing the attention on the role of liquid biopsy. Conclusions: COVID-19 pandemic has significantly modified our lives and overall medical practice. In these unprecedented times, liquid biopsy may represent a valid and less time-consuming diagnostic approach than conventional tissue and cytological specimens

    Extracellular Vesicles in Lung Cancer: Implementation in Diagnosis and Therapeutic Perspectives

    Get PDF
    : Lung cancer represents the leading cause of cancer-related mortality worldwide, with around 1.8 million deaths in 2020. For this reason, there is an enormous interest in finding early diagnostic tools and novel therapeutic approaches, one of which is extracellular vesicles (EVs). EVs are nanoscale membranous particles that can carry proteins, lipids, and nucleic acids (DNA and RNA), mediating various biological processes, especially in cell-cell communication. As such, they represent an interesting biomarker for diagnostic analysis that can be performed easily by liquid biopsy. Moreover, their growing dataset shows promising results as drug delivery cargo. The aim of our work is to summarize the recent advances in and possible implications of EVs for early diagnosis and innovative therapies for lung cancer

    Use of Modified 3D Scaffolds to Improve Cell Adhesion and Drive Desired Cell Responses.

    Get PDF
    In the most common approach of tissue engineering, a polymeric scaffold with a well-defined architecture has emerged as a promising platform for cells adhesion and guide their proliferation and differentiation into the desired tissue or organ. An ideal model for the regeneration should mimic clinical conditions of tissue injury, create a permissive microenvironment for diffusion of nutrients, gases and growth factors and permit angiogenesis. In this work, we used a 3D support made of synthetic resorbable polylactic acid (PLLA), which has considerable potential because of its well-known biocompatibility and biodegradability. One of the factors that influence cell adhesion to the scaffold is its porosity degree, but surface properties represent the main driving forces that influence the composition and orientation of proteins that will be absorbed onto material surfaces. We used scaffolds in which it was possible to control pore size and that had undergone on type-I collagen treatment, to mimic the extra cellular matrix, or plasma enhanced chemical vapor deposition (PE-CVD) combined with plasma treatment, in order to modify surface chemistry of the material. Our results show different cell affinity in non-treated scaffolds compared to type-I collagen or plasma modified ones. These surface changes are of considerable interest for tissue engineering and other areas of biomaterials science, where it can be useful to improve the surface of biomedical polymers to facilitate the colonization of the structure by the cells and obtain a more rapid regeneration or tissue replacement.In the most common approach of tissue engineering, a polymeric scaffold with a well-defined architecture has emerged as a promising platform for cells adhesion and guide their proliferation and differentiation into the desired tissue or organ. An ideal model for the regeneration should mimic clinical conditions of tissue injury, create a permissive microenvironment for diffusion of nutrients, gases and growth factors and permit angiogenesis. In this work, we used a 3D support made of synthetic resorbable polylactic acid (PLLA), which has considerable potential because of its well-known biocompatibility and biodegradability. One of the factors that influence cell adhesion to the scaffold is its porosity degree, but surface properties represent the main driving forces that influence the composition and orientation of proteins that will be absorbed onto material surfaces. We used scaffolds in which it was possible to control pore size and that had undergone on type-I collagen treatment, to mimic the extra cellular matrix, or plasma enhanced chemical vapor deposition (PE-CVD) combined with plasma treatment, in order to modify surface chemistry of the material. Our results show different cell affinity in non-treated scaffolds compared to type-I collagen or plasma modified ones. These surface changes are of considerable interest for tissue engineering and other areas of biomaterials science, where it can be useful to improve the surface of biomedical polymers to facilitate the colonization of the structure by the cells and obtain a more rapid regeneration or tissue replacement. Copyright © 2012, AIDIC Servizi S.r.l

    Roles of Tumor-Educated Platelets (TEPs) in the biology of Non-Small Cell Lung Cancer (NSCLC): A systematic review. “Re-discovering the neglected biosources of the liquid biopsy family”

    Get PDF
    Due to their interactions with the neoplasm, platelets undergo various proteomic and transcriptomic modifications, resulting in the development of what is known as the “Tumor-Educated Platelets (TEPs) phenotype”. Consequently, in addition to their suitability for Liquid Biopsy (LB) applications, they play a pivotal role in the malignancy by communicating with Circulating Tumor Cells (CTCs), Tumor Microenvironment (TME), and the tumor itself through multiple mechanisms and at multiple levels, ultimately promoting the metastasis of cancer. Therefore, this Systematic Review of MEDLINE and the Cochrane Library present in-depth insights into these phenomena, with the aim of enhancing the understanding of the complex interplay between TEPs and Non-Small Cell Lung Cancer (NSCLC). This endeavor serves to provide context and drive medical research efforts, which are increasingly focused on developing novel diagnostic and therapeutic technologies that leverage the specific binding of these platelets to the disease

    Navigating the liquid biopsy Minimal Residual Disease (MRD) in non-small cell lung cancer: Making the invisible visible

    Get PDF
    Liquid biopsy has gained increasing interest in the growing era of precision medicine as minimally invasive technique. Recent findings demonstrated that detecting minimal or molecular residual disease (MRD) in NSCLC is a challenging matter of debate that need multidisciplinary competencies, avoiding the overtreatment risk along with achieving a significant survival improvement. This review aims to provide practical consideration for solving data interpretation questions about MRD in NSCLC thanks to the close cooperation between biologists and oncology clinicians. We discussed with a translational approach the critical point of view from benchside, bedside and bunchside to facilitate the future applicability of liquid biopsy in this setting. Herein, we defined the clinical significance of MRD, focusing on relevant practical consideration about advantages and disadvantages, speculating on future clinical trial design and standardization of MRD technology

    Exploring the potential of multiomics liquid biopsy testing in the clinical setting of lung cancer

    Get PDF
    The transformative role of artificial intelligence (AI) and multiomics could enhance the diagnostic and prognostic capabilities of liquid biopsy (LB) for lung cancer (LC). Despite advances, the transition from tissue biopsies to more sophisticated, non-invasive methods like LB has been impeded by challenges such as the heterogeneity of biomarkers and the low concentration of tumour-related analytes. The advent of multiomics - enabled by deep learning algorithms - offers a solution by allowing the simultaneous analysis of various analytes across multiple biological fluids, presenting a paradigm shift in cancer diagnostics. Through multi-marker, multi-analyte and multi-source approaches, this review showcases how AI and multiomics are identifying clinically valuable biomarker combinations that correlate with patients' health statuses. However, the path towards clinical implementation is fraught with challenges, including study reproducibility and lack of methodological standardization, thus necessitating urgent solutions to solve these common issues.A flow diagram to visualize how multiomics approaches can be split into multi-marker, multi-analyte and multi-source approach; then, their link to AI, to decrypt and use in the clinical setting the messages hidden within them. The combined use of Artificial Intelligence (AI) and multiomics could improve the diagnosis and prognosis of Lung Cancer (LC) via Liquid Biopsy (LB); through multi-marker, multi-analyte, and multi-source analysis, the way is paved for the achievement of these goals, once tested through appropriate large-scale multi-center studies.imag

    The role of bone modifying agents for secondary osteoporosis prevention and pain control in post-menopausal osteopenic breast cancer patients undergoing adjuvant aromatase inhibitors

    Get PDF
    IntroductionHormonal therapy (HT) blocks the hormone-mediated growth signal dramatically reducing estrogenic levels with aromatase inhibitors (AIs) becoming a crucial component of the treatment mainstay in patients with early breast cancer (BC). Postmenopausal BC patients receiving HT present with a significant risk of secondary osteoporosis with AIs further reducing estrogen levels and ultimately leading to an accelerated rate of bone resorption and thus decreased bone mineral density (BMD). This was an observational retrospective clinical study that consecutively enrolled early BC patients with osteopenia to compare the impact of alendronate versus denosumab on secondary osteoporosis prevention and pain control.MethodsWe identified two groups of patients treated with denosumab 60 mg by subcutaneous injection once every six months or alendronate 70 mg orally once a week. All the patients underwent a baseline physiatric evaluation (T0) and underwent a follow-up visit after 18 months (T1) together with femoral and vertebral Dual-Energy X-ray Absorptiometry (DEXA) exam evaluating T-Score marks. From September 2015 to December 2019 a total of 50 early (stage I-III) BC patients were considered eligible and consecutively enrolled in our study if they met pre-specified inclusion criteria. ResultsIn the entire observed population, the addition of treatment with alendronate or denosumab led to a significant T-score improvement at the lumbar spine level (-1.92 vs -1.52, p=0.03), with a comparable contribution from alendronate (-1.60 vs -1.45, p=0.07) and denosumab (-2.26 vs -1.58, p=0.07). Regarding the femoral region, neither alendronate (-0.98 vs -1.07, p=0.23) nor denosumab (-1.39 vs -1.34, p=0.81) were able to produce any statistically relevant effect. However, concerning pain control, BMAs had a significant impact on reducing NRS scoresin the general population (T1 3.94 vs. baseline 4.32, p=0.007), with a likelyspecific contribution from alendronate (T1 3.52 vs. baseline 3.88, p=0.004) compared to denosumab (T1 4.36 vs baseline 4.76, p=0.12), without any differences in analgesic therapy assumption over time (p=0.93).DiscussionBoth alendronate and denosumab significantly contributed to preventing secondary osteoporosis in early BC patients with low BMD undergoing AIs, mostly at the lumbar spine level. Moreover, alendronate seemed to significantly impact pain control in such patients further supporting alendronate as a cost-effective option in this frail setting, although BMAs particularities should be carefully considered on an individual basis according to specific clinical contexts

    Non-Small Cell Lung Cancer Harboring Concurrent EGFR Genomic Alterations: A Systematic Review and Critical Appraisal of the Double Dilemma

    Get PDF
    The molecular pathways which promote lung cancer cell features have been broadly explored, leading to significant improvement in prognostic and diagnostic strategies. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have dramatically altered the treatment approach for patients with metastatic non-small cell lung cancer (NSCLC). Latest investigations by using next-generation sequencing (NGS) have shown that other oncogenic driver mutations, believed mutually exclusive for decades, could coexist in EGFR-mutated NSCLC patients. However, the exact clinical and pathological role of concomitant genomic aberrations needs to be investigated. In this systematic review, we aimed to summarize the recent data on the oncogenic role of concurrent genomic alterations, by specifically evaluating the characteristics, the pathological significance, and their potential impact on the treatment approach

    Theranostic biomarkers and PARP-inhibitors effectiveness in patients with non-BRCA associated homologous recombination deficient tumors: Still looking through a dirty glass window?

    Get PDF
    : Breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) deleterious variants were the first and, still today, the main biomarkers of poly(ADP)ribose polymerase (PARP)-inhibitors (PARPis) benefit. The recent, increased, numbers of individuals referred for counseling and multigene panel testing, and the remarkable expansion of approved PARPis, not restricted to BRCA1/BRCA2-Pathogenic Variants (PVs), produced a strong clinical need for non-BRCA biomarkers. Significant limitations of the current testing and assays exist. The different approaches that identify the causes of Homologous Recombination Deficiency (HRD), such as the germline and somatic Homologous Recombination Repair (HRR) gene PVs, the testing showing its consequences, such as the genomic scars, or the novel functional assays such as the RAD51 foci testing, are not interchangeable, and should not be considered as substitutes for each other in clinical practice for guiding use of PARPi in non-BRCA, HRD-associated tumors. Today, the deeper knowledge on the significant relationship among all proteins involved in the HRR, not limited to BRCA, expands the possibility of a successful non-BRCA, HRD-PARPi synthetic lethality and, at the same time, reinforces the need for enhanced definition of HRD biomarkers predicting the magnitude of PARPi benefit
    corecore