7 research outputs found
Vacuum chamber infusion for fiber-reinforced composites
A new approach to an automatable fiber impregnation and consolidation process for the manufacturing of fiber-reinforced composite parts is presented in this article. Therefore, a vacuum chamber sealing machine classically used in food packaging is modified for this approach-Vacuum Chamber Infusion (VCI). Dry fiber placement (DFP) preforms, made from 30 k carbon fiber tape, with different layer amounts and fiber orientations, are infused with the VCI and with the state-of-the-art process-Vacuum Assisted Process (VAP)-as the reference. VCI uses a closed system that is evacuated once, while VAP uses a permanently evacuated open system. Since process management greatly influences material properties, the mechanical properties, void content, and fiber volume fraction (FVF) are analyzed. In addition, the study aims to identify how the complexity of a resin infusion process can be reduced, the automation potential can be increased, and the number of consumables can be reduced. Comparable material characteristics and a reduction in consumables, setup complexity, and manufacturing time by a factor of four could be approved for VCI. A void content of less than 2% is measured for both processes and an FVF of 39% for VCI and 45% for VAP is achieved.Federal Ministry for Economic Affairs and Climate Action in German
Dry fibre placement : the influence of process parameters on mechanical laminate properties and infusion behaviour
Within the dry fibre placement (DFP) process, spread and pre-bindered carbon fibre rovings are automatically processed into dry textile preforms using 2-D and 3-D laying systems. The aim was to automate existing hand lay-up processes, reducing the complexity, increasing robustness, and facilitating the handling of the DFP technology. Process reliability, low waste rates, and flexible production are demonstrated. In this publication, the influences of the process parameters, 2 mm wide gaps and the percentage of 90° plies in the laminate, are investigated with regard to the mechanical properties, the permeability, and the infusion times in the preform z-direction (thickness). The effects on stiffness and strength are compared for several use cases. An approach to determine the infusion times as a function of the laminate thickness, the ply structure, and 2 mm wide gaps is demonstrated and analysed using vacuum-assisted process (VAP) infusion tests. The investigations are performed with carbon fibre tows (24 k), a reactive epoxy-based binder system, and a thermoset infusion resin system
Structural optimization through biomimetic-inspired material-specific application of plant-based natural fiber-reinforced polymer composites (NFRP) for future sustainable lightweight architecture
Under normal conditions, the cross-sections of reinforced concrete in classic skeleton construction systems are often only partially loaded. This contributes to non-sustainable construction solutions due to an excess of material use. Novel cross-disciplinary workflows linking architects, engineers, material scientists and manufacturers could offer alternative means for more sustainable architectural applications with extra lightweight solutions. Through material-specific use of plant-based Natural Fiber-Reinforced Polymer Composites (NFRP), also named Biocomposites, a high-performance lightweight structure with topology optimized cross-sections has been here developed. The closed life cycle of NFRPs promotes sustainability in construction through energy recovery of the quickly generative biomass-based materials. The cooperative design resulted in a development that were verified through a 1:10 demonstrator, whose fibrous morphology was defined by biomimetically-inspired orthotropic tectonics, generated with by the fiber path optimization software tools, namely EdoStructure and EdoPath in combination with the appliance of the digital additive manufacturing technique: Tailored Fiber Placement (TFP)
Fabrication of chitosan-flax composites with differing molecular weights and its effect on mechanical properties
An aqueous fabrication method is investigated for a composite reinforced with chitosan and flax fibers. The composite is characterized structurally, mechanically and chemically. A strong influence of molecular weight (MW) is identified on the composite properties. A strong fiber-matrix interface, which is associated with porosity and effective fiber impregnation, is achieved by applying low molecular weight (LMW) solution followed by casting using LMW or medium molecular weight (MMW) solution. Porosity is analyzed using μ-CT analysis. Increasing porosity with increasing molecular weight results in a decline of the tensile and flexural properties of the composites. The chitosan-flax composites have a low density compared to synthetic and natural fiber composites, which is a competitive advantage as a replacement material for particle board or plyboard in suspended ceilings, furniture compartments, sports or leisure equipment. A multiscale simulation is carried out to compute the directional effective elastic properties and predicts a potential 21% improvement of the tensile modulus if the process is optimized. This work shows the potential of chitosan-flax composites as a sustainable green material with an aqueous fabrication procedure and useful mechanical properties
Dry Fibre Placement: The Influence of Process Parameters on Mechanical Laminate Properties and Infusion Behaviour
Within the dry fibre placement (DFP) process, spread and pre-bindered carbon fibre rovings are automatically processed into dry textile preforms using 2-D and 3-D laying systems. The aim was to automate existing hand lay-up processes, reducing the complexity, increasing robustness, and facilitating the handling of the DFP technology. Process reliability, low waste rates, and flexible production are demonstrated. In this publication, the influences of the process parameters, 2 mm wide gaps and the percentage of 90° plies in the laminate, are investigated with regard to the mechanical properties, the permeability, and the infusion times in the preform z-direction (thickness). The effects on stiffness and strength are compared for several use cases. An approach to determine the infusion times as a function of the laminate thickness, the ply structure, and 2 mm wide gaps is demonstrated and analysed using vacuum-assisted process (VAP) infusion tests. The investigations are performed with carbon fibre tows (24 k), a reactive epoxy-based binder system, and a thermoset infusion resin system
Structural optimization through biomimetic-inspired material-specific application of plant-based natural fiber-reinforced polymer composites (Nfrp) for future sustainable lightweight architecture
Under normal conditions, the cross-sections of reinforced concrete in classic skeleton construction systems are often only partially loaded. This contributes to non-sustainable construction solutions due to an excess of material use. Novel cross-disciplinary workflows linking architects, engineers, material scientists and manufacturers could offer alternative means for more sustainable architectural applications with extra lightweight solutions. Through material-specific use of plant-based Natural Fiber-Reinforced Polymer Composites (NFRP), also named Biocomposites, a high-performance lightweight structure with topology optimized cross-sections has been here developed. The closed life cycle of NFRPs promotes sustainability in construction through energy recovery of the quickly generative biomass-based materials. The cooperative design resulted in a development that were verified through a 1:10 demonstrator, whose fibrous morphology was defined by biomimetically-inspired orthotropic tectonics, generated with by the fiber path optimization software tools, namely EdoStructure and EdoPath in combination with the appliance of the digital additive manufacturing technique: Tailored Fiber Placement (TFP)