19 research outputs found

    Inlet Characteristics of Bioaerosol Samplers

    No full text

    Performance of personal inhalable aerosol samplers in very slowly moving air when facing the aerosol source

    No full text
    While personal aerosol samplers have been characterized primarily based on wind tunnel tests conducted at relatively high wind speeds, modern indoor occupational environments are usually represented by very slow moving air. Recent surveys suggest that elevated levels of occupational exposure to inhalable airborne particles are typically observed when the worker, operating in the vicinity of the dust source, faces the source. Thus, the first objective of this study was to design and test a new, low cost experimental protocol for measuring the sampling efficiency of personal inhalable aerosol samplers in the vicinity of the aerosol source when the samplers operate in very slowly moving air. In this system, an aerosol generator, which is located in the centre of a room-sized non-ventilated chamber, continuously rotates and omnidirectionally disperses test particles of a specific size. The test and reference samplers are equally distributed around the source at the same distance from the centre and operate in parallel (in most of our experiments, the total number of simultaneously operating samplers was 15). Radial aerosol transport is driven by turbulent diffusion and some natural convection. For each specific particle size and the sampler, the aerosol mass concentration is measured by weighing the collection filter. The second objective was to utilize the new protocol to evaluate three widely used aerosol samplers: the IOM Personal Inhalable Sampler, the Button Personal Inhalable Aerosol Sampler and the 25 mm Millipore filter holder (closed-face C25 cassette). The sampling efficiencies of each instrument were measured with six particle fractions, ranging from 6.9 to 76.9 μm in their mass median aerodynamic diameter. The Button Sampler efficiency data demonstrated a good agreement with the standard inhalable convention and especially with the low air movement inhalabilty curve. The 25 mm filter holder was found to considerably under-sample the particles larger than 10 μm; its efficiency did not exceed 7% for particles of 40-100 μm. The IOM Sampler facing the source was found to over-sample compared with the data obtained previously with a slowly rotating, freely suspended sampler in a low air movement environment. It was also found that the particle wall deposition in the IOM metallic cartridge was rather significant and particle size-dependent. For each sampler (IOM, Button and C25) the precision was characterized through the relative standard deviation (RSD) of the aerosol concentration obtained with identical samplers in a specific experiment. The average RSD was 14% for the IOM Sampler, 11% for the Button Sampler and 35% for the 25 mm filter cassette. A separate set of experiments, performed with the Simplified Torso showed that in very slowly moving air a personal sampler can be adequately evaluated even when it is not attached to a body but freely suspended (confirming the data reported previously)

    Intensive short term measurements of the ambient aerosol in the Greater Cincinnati airshed

    No full text
    As part of a larger study undertaken in the Greater Cincinnati area to determine if diesel truck emissions are adjuvant to naturally occurring bioaerosols in the initiation of allergies in children, a more detailed intensive measurement campaign was undertaken to elucidate the characteristics of the ambient aerosol and compare to the regular, integrated measurements being conducted. The mass concentration, total number concentration, size distributions, and morphologies were established at several locations including a residential area far from major traffic (Mernic), a suburban area on both sides of a major highway (I-275, Blue Ash), a site in the city center very close to the highway (I-75, Findlay), and an enclosed oval track at a Truck Driving School. Differences between real-time tapered element oscillating microbalance (TEOM) average mass concentrations and integrated Harvard impactor (HI) measurements were observed, with the magnitude of the difference being dependent on location and the organic compounds (OC) concentrations in the sample. Qualitative variation of the peaks in real-time PM 2.5 concentrations were observed with variation in truck traffic at the Findlay site; and no peaks in real-time PM 2.5 levels were observed at Mernic. Minimal variation in PM 2.5 was observed with distance from the highway at the Blue Ash site (fewer trucks). The site at Mernic had a smaller fraction of aggregated particles in comparison to the other sites. The two-dimensional fractal dimensions measured at the Findlay, Blue Ash, and Truck Driving School sites were statistically identical (1.58–1.61) but were higher than that measured at the Mernic site (1.41). Implications of the intensive measurement campaign vis-à-vis the epidemiological study are discussed briefly

    UNMIX modeling of ambient PM2.5 near an interstate highway in Cincinnati, OH, USA

    No full text
    The “Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS)” is underway to determine if infants who are exposed to diesel engine exhaust particles are at an increased risk for atopy and atopic respiratory disorders, and to determine if this effect is magnified in a genetically at risk population. In support of this study, a methodology has been developed to allocate local traffic source contributions to ambient PM(2.5) in the Cincinnati airshed. As a first step towards this allocation, UNMIX was used to generate factors for ambient PM(2.5) at two sites near at interstate highway. Procedures adopted to collect, analyze and prepare the data sets to run UNMIX are described. The factors attributed to traffic sources were similar for the two sites. These factors were also similar to locally measured truck engine-exhaust enriched ambient profiles. The temporal variation of the factors was analyzed with clear differences observed between factors attributed to traffic sources and combustion-related regional secondary sources
    corecore