37 research outputs found

    Feasibility, acceptability, and cost of tuberculosis testing by whole-blood interferon-gamma assay

    Get PDF
    BACKGROUND: The whole-blood interferon-gamma release assay (IGRA) is recommended in some settings as an alternative to the tuberculin skin test (TST). Outcomes from field implementation of the IGRA for routine tuberculosis (TB) testing have not been reported. We evaluated feasibility, acceptability, and costs after 1.5 years of IGRA use in San Francisco under routine program conditions. METHODS: Patients seen at six community clinics serving homeless, immigrant, or injection-drug user (IDU) populations were routinely offered IGRA (Quantiferon-TB). Per guidelines, we excluded patients who were <17 years old, HIV-infected, immunocompromised, or pregnant. We reviewed medical records for IGRA results and completion of medical evaluation for TB, and at two clinics reviewed TB screening logs for instances of IGRA refusal or phlebotomy failure. RESULTS: Between November 1, 2003 and February 28, 2005, 4143 persons were evaluated by IGRA. 225(5%) specimens were not tested, and 89 (2%) were IGRA-indeterminate. Positive or negative IGRA results were available for 3829 (92%). Of 819 patients with positive IGRA results, 524 (64%) completed diagnostic evaluation within 30 days of their IGRA test date. Among 503 patients eligible for IGRA testing at two clinics, phlebotomy was refused by 33 (7%) and failed in 40 (8%). Including phlebotomy, laboratory, and personnel costs, IGRA use cost $33.67 per patient tested. CONCLUSION: IGRA implementation in a routine TB control program setting was feasible and acceptable among homeless, IDU, and immigrant patients in San Francisco, with results more frequently available than the historically described performance of TST. Laboratory-based diagnosis and surveillance for M. tuberculosis infection is now possible

    Early Detection of Tuberculosis Outbreaks among the San Francisco Homeless: Trade-Offs Between Spatial Resolution and Temporal Scale

    Get PDF
    BACKGROUND: San Francisco has the highest rate of tuberculosis (TB) in the U.S. with recurrent outbreaks among the homeless and marginally housed. It has been shown for syndromic data that when exact geographic coordinates of individual patients are used as the spatial base for outbreak detection, higher detection rates and accuracy are achieved compared to when data are aggregated into administrative regions such as zip codes and census tracts. We examine the effect of varying the spatial resolution in the TB data within the San Francisco homeless population on detection sensitivity, timeliness, and the amount of historical data needed to achieve better performance measures. METHODS AND FINDINGS: We apply a variation of space-time permutation scan statistic to the TB data in which a patient's location is either represented by its exact coordinates or by the centroid of its census tract. We show that the detection sensitivity and timeliness of the method generally improve when exact locations are used to identify real TB outbreaks. When outbreaks are simulated, while the detection timeliness is consistently improved when exact coordinates are used, the detection sensitivity varies depending on the size of the spatial scanning window and the number of tracts in which cases are simulated. Finally, we show that when exact locations are used, smaller amount of historical data is required for training the model. CONCLUSION: Systematic characterization of the spatio-temporal distribution of TB cases can widely benefit real time surveillance and guide public health investigations of TB outbreaks as to what level of spatial resolution results in improved detection sensitivity and timeliness. Trading higher spatial resolution for better performance is ultimately a tradeoff between maintaining patient confidentiality and improving public health when sharing data. Understanding such tradeoffs is critical to managing the complex interplay between public policy and public health. This study is a step forward in this direction

    Cost-effectiveness of tuberculosis evaluation and treatment of newly-arrived immigrants

    Get PDF
    BACKGROUND: Immigrants to the U.S. are required to undergo overseas screening for tuberculosis (TB), but the value of evaluation and treatment following entry to the U.S. is not well understood. We determined the cost-effectiveness of domestic follow-up of immigrants identified as tuberculosis suspects through overseas screening. METHODS: Using a stochastic simulation for tuberculosis reactivation, transmission, and follow-up for a hypothetical cohort of 1000 individuals, we calculated the incremental cost-effectiveness of follow-up and evaluation interventions. We utilized published literature, California Reports of Verified Cases of Tuberculosis (RVCTs), demographic estimates from the California Department of Finance, Medicare reimbursement, and Medi-Cal reimbursement rates. Our target population was legal immigrants to the United States, our time horizon is twenty years, and our perspective was that of all domestic health-care payers. We examined the intervention to offer latent tuberculosis therapy to infected individuals, to increase the yield of domestic evaluation, and to increase the starting and completion rates of LTBI therapy with INH (isoniazid). Our outcome measures were the number of cases averted, the number of deaths averted, the incremental dollar cost (year 2004), and the number of quality-adjusted life-years saved. RESULTS: Domestic follow-up of B-notification patients, including LTBI treatment for latently infected individuals, is highly cost-effective, and at times, cost-saving. B-notification follow-up in California would reduce the number of new tuberculosis cases by about 6–26 per year (out of a total of approximately 3000). Sensitivity analysis revealed that domestic follow-up remains cost-effective when the hepatitis rates due to INH therapy are over fifteen times our best estimates, when at least 0.4 percent of patients have active disease and when hospitalization of cases detected through domestic follow-up is no less likely than hospitalization of passively detected cases. CONCLUSION: While the current immigration screening program is unlikely to result in a large change in case rates, domestic follow-up of B-notification patients, including LTBI treatment, is highly cost-effective. If as many as three percent of screened individuals have active TB, and early detection reduces the rate of hospitalization, net savings may be expected

    Feasibility, acceptability, and cost of tuberculosis testing by whole-blood interferon-gamma assay

    No full text
    Abstract Background The whole-blood interferon-gamma release assay (IGRA) is recommended in some settings as an alternative to the tuberculin skin test (TST). Outcomes from field implementation of the IGRA for routine tuberculosis (TB) testing have not been reported. We evaluated feasibility, acceptability, and costs after 1.5 years of IGRA use in San Francisco under routine program conditions. Methods Patients seen at six community clinics serving homeless, immigrant, or injection-drug user (IDU) populations were routinely offered IGRA (Quantiferon-TB). Per guidelines, we excluded patients who were Results Between November 1, 2003 and February 28, 2005, 4143 persons were evaluated by IGRA. 225(5%) specimens were not tested, and 89 (2%) were IGRA-indeterminate. Positive or negative IGRA results were available for 3829 (92%). Of 819 patients with positive IGRA results, 524 (64%) completed diagnostic evaluation within 30 days of their IGRA test date. Among 503 patients eligible for IGRA testing at two clinics, phlebotomy was refused by 33 (7%) and failed in 40 (8%). Including phlebotomy, laboratory, and personnel costs, IGRA use cost $33.67 per patient tested. Conclusion IGRA implementation in a routine TB control program setting was feasible and acceptable among homeless, IDU, and immigrant patients in San Francisco, with results more frequently available than the historically described performance of TST. Laboratory-based diagnosis and surveillance for M. tuberculosis infection is now possible.</p

    Average detection timeliness of the method applied to simulated outbreaks using a fixed spatial window of 0.2 km with increasing time window.

    No full text
    <p>The average -log<sub>2</sub> transformed p-value was calculated across the same 12 geographic regions as those used in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0001284#pone-0001284-g004" target="_blank">Figure 4</a> for individual addresses (blue bars) versus census tract centroids (red bars) with increasing counts of simulated cases, one for each month.</p

    Significant signals detected by the method applied to the confirmed <i>p9</i> outbreaks using individual addresses (A–E) and census tract centroids (F–H).

    No full text
    <p>San Francisco map is partitioned by census tract where tracts shaded red represent the location of the significant signal detected for the specified dates in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0001284#pone-0001284-t001" target="_blank">Table 1</a>. To protect patient confidentiality, only the census tracts in plots A–E are shaded, as opposed to highlighting the exact locations.</p

    Average detection sensitivity of the method applied to simulated outbreaks.

    No full text
    <p>Cases were simulated in one to four adjacent census tracts using a fixed time window with increasing spatial window. The percentage of outbreaks detected are reported using individual addresses (blue bars) and census tract centroids (red bars) for spatial window sizes of (A) 0.02 km, (B) 0.1 km, (C) 0.2 km, (D) 0.5 km, and (E) 1 km, where in each case, simulated outbreaks were added to increasing number of census tracts (1 to 4) . This simulation was conducted on 12 separate geographic regions of 0.2 km in range and the average detection percentage was calculated. For each plot, the horizontal axis is scaled to the maximum detection sensitivity percentage to better visualize the primary comparison between individual addresses and census tract.</p

    Number of TB cases in San Francisco for the years of 1991–2002:

    No full text
    <p>(A) general population, (B) homeless population. Each tick on the x-axis is a summation of TB cases over a three month interval. Grey dashed lines separate each year.</p
    corecore