3 research outputs found

    Many-body localization and thermalization in the full probability distribution function of observables

    Get PDF
    We investigate the relation between thermalization following a quantum quench and many-body localization in quasiparticle space in terms of the long-time full distribution function of physical observables. In particular, expanding on our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)], we focus on the long-time behavior of an integrable XXZ chain subject to an integrability-breaking perturbation. After a characterization of the breaking of integrability and the associated localization/delocalization transition using the level spacing statistics and the properties of the eigenstates, we study the effect of integrability-breaking on the asymptotic state after a quantum quench of the anisotropy parameter, looking at the behavior of the full probability distribution of the transverse and longitudinal magnetization of a subsystem. We compare the resulting distributions with those obtained in equilibrium at an effective temperature set by the initial energy. We find that, while the long time distribution functions appear to always agree {\it qualitatively} with the equilibrium ones, {\it quantitative} agreement is obtained only when integrability is fully broken and the relevant eigenstates are diffusive in quasi-particle space.Comment: 18 pages, 11 figure

    Quantum Quench in the Transverse Field Ising chain I: Time evolution of order parameter correlators

    Full text link
    We consider the time evolution of order parameter correlation functions after a sudden quantum quench of the magnetic field in the transverse field Ising chain. Using two novel methods based on determinants and form factor sums respectively, we derive analytic expressions for the asymptotic behaviour of one and two point correlators. We discuss quenches within the ordered and disordered phases as well as quenches between the phases and to the quantum critical point. We give detailed account of both methods.Comment: 65 pages, 21 figures, some typos correcte
    corecore