1,672 research outputs found

    Thermal stress response of General Purpose Heat Source (GPHS) aeroshell material

    Get PDF
    A thermal stress test was conducted to determine the ability of the GPHS aeroshell 3 D FWPF material to maintain physical integrity when exposed to a severe heat flux such as would occur from prompt reentry of GPHS modules. The test was performed in the Giant Planetary Facility at NASA's Ames Research Center. Good agreement was obtained between the theoretical and experimental results for both temperature and strain time histories. No physical damage was observed in the test specimen. These results provide initial corroboration both of the analysis techniques and that the GPHS reentry member will survive the reentry thermal stress levels expected

    Degradation and reuse of radiative thermal protection system materials for the space shuttle

    Get PDF
    Three silicide coated columbium alloys and two cobalt alloys were subjected to identical simulated reentry profiling exposures in both static (controlled vacuum leak) and dynamic (hypersonic plasma shear) environments. Primary emphasis in the columbium alloy evaluation was on the Cb752 and C129Y alloys with a lesser amount on FS85. Commercial silicide coatings of the R512E and VH109 formulations were used. The coated specimens were intentionally defected to provide the types of coating flaws that are expected in service. Temperatures were profiled up to peak temperatures of either 2350 F or 2500 F for 15 minutes in each cycle

    Using {\sc top-c} for Commodity Parallel Computing in Cosmic Ray Physics Simulations

    Get PDF
    {\sc top-c} (Task Oriented Parallel C) is a freely available package for parallel computing. It is designed to be easy to learn and to have good tolerance for the high latencies that are common in commodity networks of computers. It has been successfully used in a wide range of examples, providing linear speedup with the number of computers. A brief overview of {\sc top-c} is provided, along with recent experience with cosmic ray physics simulations.Comment: Talk to be presented at the XI International Symposium on Very High Energy Cosmic Ray Interaction

    Spectral state dependence of the 0.4-2 MeV polarized emission in Cygnus X-1 seen with INTEGRAL/IBIS, and links with the AMI radio data

    Get PDF
    Polarization of the >~400 keV hard tail of the microquasar Cygnus X-1 has been independently reported by INTEGRAL/IBIS, and INTEGRAL/SPI and interpreted as emission from a compact jet. These conclusions were, however, based on the accumulation of all INTEGRAL data regardless of the spectral state. We utilize additional INTEGRAL exposure accumulated until December 2012, and include the AMI/Ryle (15 GHz) radio data in our study. We separate the observations into hard, soft, and intermediate/transitional states and detect radio emission from a compact jet in hard and intermediate states, but not in the soft. The 10-400 keV INTEGRAL (JEM-X and IBIS) state resolved spectra are well modeled with thermal Comptonization and reflection components. We detect a hard tail in the 0.4-2 MeV range for the hard state only. We extract the state dependent polarigrams of Cyg X-1, which all are compatible to no or undetectable level of polarization except in 400-2000 keV range in the hard state where the polarization fraction is 75±\pm32 % and the polarization angle 40.0 +-14 deg. An upper limit on the 0.4-2 MeV soft state polarization fraction is 70%. Due to the short exposure, we obtain no meaningful constraint for the intermediate state. The likely detection of a >400 keV polarized tail in the hard state, together with the simultaneous presence of a radio jet, reinforce the notion of a compact jet origin of the 400 keV emission.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Q-phonon description of low lying 1^- two-phonon states in spherical nuclei

    Full text link
    The properties of 1^-_1 two-phonon states and the characteristics of E1 transition probabilities between low-lying collective states in spherical nuclei are analysed within the Q-phonon approach to the description of collective states. Several relations between observables are obtained. Microscopic calculations of the E1 0^+_1 -> 1^-_1 transition matrix elements are performed on the basis of the RPA. A satisfactory description of the experimental data is obtained.Comment: 16 pages, 2 figures, 9 table

    The ability of four strains of Streptococcus uberis to induce clinical mastitis after intramammary inoculation in lactating cows

    Get PDF
    AIM: To compare the ability of four strains of Streptococcus uberis at two doses to induce clinical mastitis in lactating dairy cows after intramammary inoculation in order to evaluate their usefulness for future experimental infection models. MATERIALS AND METHODS: Four field strains of Streptococcus uberis (26LB, S418, and S523 and SR115) were obtained from cows with clinical mastitis in the Wairarapa and Waikato regions of New Zealand. Twenty-four crossbred lactating cows, with no history of mastitis and absence of major pathogens following culture of milk samples, were randomly allocated to four groups (one per strain) of six cows. Each cow was infused (Day 0) in one quarter with approximately 104 cfu and in the contralateral quarter with approximately 106 cfu of the same strain. The other two quarters remained unchallenged. All four quarters were then inspected for signs of clinical mastitis, by palpation and observation of the foremilk, twice daily from Days 0–9, and composite milk samples were collected from Days 0–8 for analysis of somatic cell counts (SCC). Quarters were treated with penicillin when clinical mastitis was observed. Duplicate milk samples were collected and cultured on presentation of each clinical case and on Day 4 from challenged quarters with no clinical signs. RESULTS: Clinical mastitis was diagnosed in 26/48 (54%) challenged quarters. Challenge with strain S418 resulted in more cases of mastitis (12/12 quarters) than strains SR115 (7/12), 26LB (6/12) or S523 (1/12), and the mean interval from challenge to first diagnosis of mastitis was shorter for S418 than the other strains (p<0.001). The proportion of quarters from which S. uberis could be isolated after challenge was less for strain 26LB (1/6) than SR115 (6/7) (p<0.05), and SCC following challenge was lower for strain S523 than the other strains (p<0.05). CONCLUSIONS: There were significant differences between the strains in the proportion of quarters developing clinical mastitis, the interval to mastitis onset, SCC following challenge and the proportion of clinical cases from which S. uberis could be isolated. These results illustrate the difference in the ability of S. uberis strains to cause mastitis and the severity of the infections caused. CLINICAL RELEVANCE: Experimental challenge models can be used to compare infectivity and pathogenicity of different strains of mastitis-causing bacteria, the efficacy of pharmaceutical products and host-responses in a cost-effective manner.S Notcovich, G deNicolo, NB Williamson, A Grinberg, N Lopez-Villalobos, KR Petrovsk

    Accretion Disc Evolution in GRO J1655-40 and LMC X-3 with Relativistic and Non-Relativistic Disc Models

    Full text link
    Black hole X-ray binaries are ideal environments to study the accretion phenomena in strong gravitational potentials. These systems undergo dramatic accretion state transitions and analysis of the X-ray spectra is used to probe the properties of the accretion disc and its evolution. In this work, we present a systematic investigation of \sim1800 spectra obtained by RXTE PCA observations of GRO J1655-40 and LMC X-3 to explore the nature of the accretion disc via non-relativistic and relativistic disc models describing the thermal emission in black-hole X-ray binaries. We demonstrate that the non-relativistic modelling throughout an outburst with the phenomenological multi-colour disc model DISKBB yields significantly lower and often unphysical inner disc radii and correspondingly higher (\sim50-60\%) disc temperatures compared to its relativistic counterparts KYNBB and KERRBB. We obtained the dimensionless spin parameters of a=0.774±0.069a_{*}=0.774 \pm 0.069 and a=0.752±0.061a_{*}=0.752 \pm 0.061 for GRO J1655-40 with KERRBB and KYNBB, respectively. We report a spin value of a=0.098±0.063a_{*}=0.098 \pm 0.063 for LMC X-3 using the updated black hole mass of 6.98 M{M_{\odot}}. Both measurements are consistent with the previous studies. Using our results, we highlight the importance of self-consistent modelling of the thermal emission, especially when estimating the spin with the continuum-fitting method which assumes the disc terminates at the innermost stable circular orbit at all times.Comment: Accepted for publication in MNRAS, 23 pages 17 figure

    Estimates for measures of sections of convex bodies

    Full text link
    A n\sqrt{n} estimate in the hyperplane problem with arbitrary measures has recently been proved in \cite{K3}. In this note we present analogs of this result for sections of lower dimensions and in the complex case. We deduce these inequalities from stability in comparison problems for different generalizations of intersection bodies

    L-Drawings of Directed Graphs

    Full text link
    We introduce L-drawings, a novel paradigm for representing directed graphs aiming at combining the readability features of orthogonal drawings with the expressive power of matrix representations. In an L-drawing, vertices have exclusive xx- and yy-coordinates and edges consist of two segments, one exiting the source vertically and one entering the destination horizontally. We study the problem of computing L-drawings using minimum ink. We prove its NP-completeness and provide a heuristics based on a polynomial-time algorithm that adds a vertex to a drawing using the minimum additional ink. We performed an experimental analysis of the heuristics which confirms its effectiveness.Comment: 11 pages, 7 figure
    corecore