5,366 research outputs found
Cold inelastic collisions between lithium and cesium in a two-species magneto-optical trap
We investigate collisional properties of lithium and cesium which are
simultaneously confined in a combined magneto-optical trap. Trap-loss
collisions between the two species are comprehensively studied. Different
inelastic collision channels are identified, and inter-species rate
coefficients as well as cross sections are determined. It is found that loss
rates are independent of the optical excitation of Li, as a consequence of the
repulsive Li-Cs interaction. Li and Cs loss by inelastic inter-species
collisions can completely be attributed to processes involving optically
excited cesium (fine-structure changing collisions and radiative escape). By
lowering the trap depth for Li, an additional loss channel of Li is observed
which results from ground-state Li-Cs collisions changing the hyperfine state
of cesium.Comment: submitted to Euro. Phys. J. D, special issue on Laser Cooling and
Trappin
Spectrum of a duality-twisted Ising quantum chain
The Ising quantum chain with a peculiar twisted boundary condition is
considered. This boundary condition, first introduced in the framework of the
spin-1/2 XXZ Heisenberg quantum chain, is related to the duality
transformation, which becomes a symmetry of the model at the critical point.
Thus, at the critical point, the Ising quantum chain with the duality-twisted
boundary is translationally invariant, similar as in the case of the usual
periodic or antiperiodic boundary conditions. The complete energy spectrum of
the Ising quantum chain is calculated analytically for finite systems, and the
conformal properties of the scaling limit are investigated. This provides an
explicit example of a conformal twisted boundary condition and a corresponding
generalised twisted partition function.Comment: LaTeX, 7 pages, using IOP style
Non-universal behavior for aperiodic interactions within a mean-field approximation
We study the spin-1/2 Ising model on a Bethe lattice in the mean-field limit,
with the interaction constants following two deterministic aperiodic sequences:
Fibonacci or period-doubling ones. New algorithms of sequence generation were
implemented, which were fundamental in obtaining long sequences and, therefore,
precise results. We calculate the exact critical temperature for both
sequences, as well as the critical exponent , and . For
the Fibonacci sequence, the exponents are classical, while for the
period-doubling one they depend on the ratio between the two exchange
constants. The usual relations between critical exponents are satisfied, within
error bars, for the period-doubling sequence. Therefore, we show that
mean-field-like procedures may lead to nonclassical critical exponents.Comment: 6 pages, 7 figures, to be published in Phys. Rev.
Dilute Birman--Wenzl--Murakami Algebra and models
A ``dilute'' generalisation of the Birman--Wenzl--Murakami algebra is
considered. It can be ``Baxterised'' to a solution of the Yang--Baxter algebra.
The vertex models are examples of corresponding solvable
lattice models and can be regarded as the dilute version of the
vertex models.Comment: 11 page
Pinwheel patterns and powder diffraction
Pinwheel patterns and their higher dimensional generalisations display
continuous circular or spherical symmetries in spite of being perfectly
ordered. The same symmetries show up in the corresponding diffraction images.
Interestingly, they also arise from amorphous systems, and also from regular
crystals when investigated by powder diffraction. We present first steps and
results towards a general frame to investigate such systems, with emphasis on
statistical properties that are helpful to understand and compare the
diffraction images. We concentrate on properties that are accessible via an
alternative substitution rule for the pinwheel tiling, based on two different
prototiles. Due to striking similarities, we compare our results with the toy
model for the powder diffraction of the square lattice.Comment: 7 pages, 4 figure
Aperiodic Ising Quantum Chains
Some years ago, Luck proposed a relevance criterion for the effect of
aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In
this article, we show how Luck's criterion can be derived within an exact
renormalisation scheme for Ising quantum chains with coupling constants
modulated according to substitution rules. Luck's conjectures for this case are
confirmed and refined. Among other outcomes, we give an exact formula for the
correlation length critical exponent for arbitrary two-letter substitution
sequences with marginal fluctuations of the coupling constants.Comment: 27 pages, LaTeX, 1 Postscript figure included, using epsf.sty and
amssymb.sty (one error corrected, some minor changes
The bubble algebra: structure of a two-colour Temperley–Lieb Algebra
We define new diagram algebras providing a sequence of multiparameter generalizations of the Temperley–Lieb algebra, suitable for the modelling of dilute lattice systems of two-dimensional statistical mechanics. These algebras give a rigorous foundation to the various 'multi-colour algebras' of Grimm, Pearce and others. We determine the generic representation theory of the simplest of these algebras, and locate the nongeneric cases (at roots of unity of the corresponding parameters). We show by this example how the method used (Martin's general procedure for diagram algebras) may be applied to a wide variety of such algebras occurring in statistical mechanics. We demonstrate how these algebras may be used to solve the Yang–Baxter equations
Surface Properties of Aperiodic Ising Quantum Chains
We consider Ising quantum chains with quenched aperiodic disorder of the
coupling constants given through general substitution rules. The critical
scaling behaviour of several bulk and surface quantities is obtained by exact
real space renormalization.Comment: 4 pages, RevTex, reference update
The spin-1/2 XXZ Heisenberg chain, the quantum algebra U_q[sl(2)], and duality transformations for minimal models
The finite-size scaling spectra of the spin-1/2 XXZ Heisenberg chain with
toroidal boundary conditions and an even number of sites provide a projection
mechanism yielding the spectra of models with a central charge c<1 including
the unitary and non-unitary minimal series. Taking into account the
half-integer angular momentum sectors - which correspond to chains with an odd
number of sites - in many cases leads to new spinor operators appearing in the
projected systems. These new sectors in the XXZ chain correspond to a new type
of frustration lines in the projected minimal models. The corresponding new
boundary conditions in the Hamiltonian limit are investigated for the Ising
model and the 3-state Potts model and are shown to be related to duality
transformations which are an additional symmetry at their self-dual critical
point. By different ways of projecting systems we find models with the same
central charge sharing the same operator content and modular invariant
partition function which however differ in the distribution of operators into
sectors and hence in the physical meaning of the operators involved. Related to
the projection mechanism in the continuum there are remarkable symmetry
properties of the finite XXZ chain. The observed degeneracies in the energy and
momentum spectra are shown to be the consequence of intertwining relations
involving U_q[sl(2)] quantum algebra transformations.Comment: This is a preprint version (37 pages, LaTeX) of an article published
back in 1993. It has been made available here because there has been recent
interest in conformal twisted boundary conditions. The "duality-twisted"
boundary conditions discussed in this paper are particular examples of such
boundary conditions for quantum spin chains, so there might be some renewed
interest in these result
Optical and evaporative cooling of cesium atoms in the gravito-optical surface trap
We report on cooling of an atomic cesium gas closely above an evanescent-wave
atom mirror. At high densitities, optical cooling based on inelastic
reflections is found to be limited by a density-dependent excess temperature
and trap loss due to ultracold collisions involving repulsive molecular states.
Nevertheless, very good starting conditions for subsequent evaporative cooling
are obtained. Our first evaporation experiments show a temperature reduction
from 10muK down to 300nK along with a gain in phase-space density of almost two
orders of magnitude.Comment: 8 pages, 6 figures, submitted to Journal of Modern Optics, special
issue "Fundamentals of Quantum Optics V", edited by F. Ehlotzk
- …