1,627 research outputs found
Extended supersymmetric sigma models in AdS_4 from projective superspace
There exist two superspace approaches to describe N=2 supersymmetric
nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in
terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and
arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS
projective-superspace techniques developed in arXiv:0807.3368. The virtue of
the approach (i) is that it makes manifest the geometric properties of the N=2
supersymmetric sigma-models in AdS_4. The target space must be a non-compact
hyperkahler manifold endowed with a Killing vector field which generates an
SO(2) group of rotations on the two-sphere of complex structures. The power of
the approach (ii) is that it allows us, in principle, to generate hyperkahler
metrics as well as to address the problem of deformations of such metrics.
Here we show how to relate the formulation (ii) to (i) by integrating out an
infinite number of N=1 AdS auxiliary superfields and performing a superfield
duality transformation. We also develop a novel description of the most general
N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral
superfields on three-dimensional N=2 flat superspace without central charge.
This superspace naturally originates from a conformally flat realization for
the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates
for AdS_4. This novel formulation allows us to uncover several interesting
geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE
Repulsively bound atom pairs in an optical lattice
Throughout physics, stable composite objects are usually formed via
attractive forces, which allow the constituents to lower their energy by
binding together. Repulsive forces separate particles in free space. However,
in a structured environment such as a periodic potential and in the absence of
dissipation, stable composite objects can exist even for repulsive
interactions. Here we report on the first observation of such an exotic bound
state, comprised of a pair of ultracold atoms in an optical lattice. Consistent
with our theoretical analysis, these repulsively bound pairs exhibit long
lifetimes, even under collisions with one another. Signatures of the pairs are
also recognised in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional condensed
matter systems of such repulsively bound pairs, due to the presence of strong
decay channels. These results exemplify on a new level the strong
correspondence between the optical lattice physics of ultracold bosonic atoms
and the Bose-Hubbard model, a correspondence which is vital for future
applications of these systems to the study of strongly correlated condensed
matter systems and to quantum information.Comment: 5 pages, 4 figure
Evidence for Efimov quantum states in an ultracold gas of cesium atoms
Systems of three interacting particles are notorious for their complex
physical behavior. A landmark theoretical result in few-body quantum physics is
Efimov's prediction of a universal set of bound trimer states appearing for
three identical bosons with a resonant two-body interaction.
Counterintuitively, these states even exist in the absence of a corresponding
two-body bound state. Since the formulation of Efimov's problem in the context
of nuclear physics 35 years ago, it has attracted great interest in many areas
of physics. However, the observation of Efimov quantum states has remained an
elusive goal. Here we report the observation of an Efimov resonance in an
ultracold gas of cesium atoms. The resonance occurs in the range of large
negative two-body scattering lengths, arising from the coupling of three free
atoms to an Efimov trimer. Experimentally, we observe its signature as a giant
three-body recombination loss when the strength of the two-body interaction is
varied. We also detect a minimum in the recombination loss for positive
scattering lengths, indicating destructive interference of decay pathways. Our
results confirm central theoretical predictions of Efimov physics and represent
a starting point with which to explore the universal properties of resonantly
interacting few-body systems. While Feshbach resonances have provided the key
to control quantum-mechanical interactions on the two-body level, Efimov
resonances connect ultracold matter to the world of few-body quantum phenomena.Comment: 18 pages, 3 figure
Radio-frequency dressed state potentials for neutral atoms
Potentials for atoms can be created by external fields acting on properties
like magnetic moment, charge, polarizability, or by oscillating fields which
couple internal states. The most prominent realization of the latter is the
optical dipole potential formed by coupling ground and electronically excited
states of an atom with light. Here we present an experimental investigation of
the remarkable properties of potentials derived from radio-frequency (RF)
coupling between electronic ground states. The coupling is magnetic and the
vector character allows to design state dependent potential landscapes. On atom
chips this enables robust coherent atom manipulation on much smaller spatial
scales than possible with static fields alone. We find no additional heating or
collisional loss up to densities approaching atoms / cm compared
to static magnetic traps. We demonstrate the creation of Bose-Einstein
condensates in RF potentials and investigate the difference in the interference
between two independently created and two coherently split condensates in
identical traps. All together this makes RF dressing a powerful new tool for
micro manipulation of atomic and molecular systems
Using argument notation to engineer biological simulations with increased confidence
The application of computational and mathematical modelling to explore the mechanics of biological systems is becoming prevalent. To significantly impact biological research, notably in developing novel therapeutics, it is critical that the model adequately represents the captured system. Confidence in adopting in silico approaches can be improved by applying a structured argumentation approach, alongside model development and results analysis. We propose an approach based on argumentation from safety-critical systems engineering, where a system is subjected to a stringent analysis of compliance against identified criteria. We show its use in examining the biological information upon which a model is based, identifying model strengths, highlighting areas requiring additional biological experimentation and providing documentation to support model publication. We demonstrate our use of structured argumentation in the development of a model of lymphoid tissue formation, specifically Peyer's Patches. The argumentation structure is captured using Artoo (www.york.ac.uk/ycil/software/artoo), our Web-based tool for constructing fitness-for-purpose arguments, using a notation based on the safety-critical goal structuring notation. We show how argumentation helps in making the design and structured analysis of a model transparent, capturing the reasoning behind the inclusion or exclusion of each biological feature and recording assumptions, as well as pointing to evidence supporting model-derived conclusions
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
Off-shell supergravity-matter couplings in three dimensions
We develop the superspace geometry of N-extended conformal supergravity in
three space-time dimensions. General off-shell supergravity-matter couplings
are constructed in the cases N=1,2,3,4.Comment: 73 pages; V5: typos in eqs. (3.4b), (3.17) and (4.24) correcte
N=8 Superspace Constraints for Three-dimensional Gauge Theories
We present a systematic analysis of the N=8 superspace constraints in three
space-time dimensions. The general coupling between vector and scalar
supermultiplets is encoded in an SO(8) tensor W_{AB} which is a function of the
matter fields and subject to a set of algebraic and super-differential
relations. We show how the conformal BLG model as well as three-dimensional
super Yang-Mills theory provide solutions to these constraints and can both be
formulated in this universal framework.Comment: 34 + 10 pages; added references, minor correction
Evidence for F(uzz) Theory
We show that in the decoupling limit of an F-theory compactification, the
internal directions of the seven-branes must wrap a non-commutative four-cycle
S. We introduce a general method for obtaining fuzzy geometric spaces via toric
geometry, and develop tools for engineering four-dimensional GUT models from
this non-commutative setup. We obtain the chiral matter content and Yukawa
couplings, and show that the theory has a finite Kaluza-Klein spectrum. The
value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points
on the internal four-cycle S. This relation puts a non-trivial restriction on
the space of gauge theories that can arise as a limit of F-theory. By viewing
the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the
geometry, we argue that this theory admits a holographic dual description in
the large N limit. We also entertain the possibility of constructing string
models with large fuzzy extra dimensions, but with a high scale for quantum
gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde
- âŠ