736 research outputs found

    Latest Developments on HeII Co-Current Two-Phase Flow Studies

    Get PDF
    Large scale experiments were performed at CEA Grenoble with the support of CERN to simulate and understand the HeII cooling circuit of the LHC. This paper describes the latest results obtained in HeII co-current two-phase flow configuration. First we summarize thermal and hydraulic behaviour of flows obtained in a 40 mm I.D., 86 m long tube inclined at 1.4% which resembles closely the LHC heat exchanger tube. For low vapour velocities, the flow pattern is found to be stratified. A model based on this observation has been developed which fits very well the measured pressure losses. However the wetted surface predicted by the model underestimates the measured one, notably for high vapour velocities. In that case, liquid droplets entrainment takes place. Droplets landing on the tube wall increase the wetted surface. Thus we infer that for higher vapour velocities, the stratified two-phase flow model should not be applied anymore. In order to validate the range of availability of the model, and begin to draw a flow pattern map, a 20 mm I.D. horizontal test sector was built and experiments were performed. First results are presented here, including the observation of the stratified-annular flow transition

    Exposure to Maternal Diabetes Is Associated With Early Abnormal Vascular Structure in Offspring

    Get PDF
    Aim/hypothesis: In utero exposure to maternal diabetes increases the risk of developing hypertension and cardiovascular disorders during adulthood. We have previously shown that this is associated with changes in vascular tone in favor of a vasoconstrictor profile, which is involved in the development of hypertension. This excessive constrictor tone has also a strong impact on vascular structure. Our objective was to study the impact of in utero exposure to maternal diabetes on vascular structure and remodeling induced by chronic changes in hemodynamic parameters. Methods and Results: We used an animal model of rats exposed in utero to maternal hyperglycemia (DMO), which developed hypertension at 6 months of age. At a pre-hypertensive stage (3 months of age), we observed deep structural modifications of the vascular wall without any hemodynamic perturbations. Indeed, in basal conditions, resistance arteries of DMO rats are smaller than those of control mother offspring (CMO) rats; in addition, large arteries like thoracic aorta of DMO rats have an increase of smooth muscle cell attachments to elastic lamellae. In an isolated perfused kidney, we also observed a leftward shift of the flow/pressure relationship, suggesting a rise in renal peripheral vascular resistance in DMO compared to CMO rats. In this context, we studied vascular remodeling in response to reduced blood flow by in vivo mesenteric arteries ligation. In DMO rats, inward remodeling induced by a chronic reduction in blood flow (1 or 3 weeks after ligation) did not occur by contrast to CMO rats in which arterial diameter decreased from 428 ± 17 μm to 331 ± 20 μm (at 125 mmHg, p = 0.001). In these animals, the transglutaminase 2 (TG2) pathway, essential for inward remodeling development in case of flow perturbations, was not activated in low-flow (LF) mesenteric arteries. Finally, in old hypertensive DMO rats (18 months of age), we were not able to detect a pressure-induced remodeling in thoracic aorta. Conclusions: Our results demonstrate for the first time that in utero exposure to maternal diabetes induces deep changes in the vascular structure. Indeed, the early narrowing of the microvasculature and the structural modifications of conductance arteries could be a pre-emptive adaptation to fetal programming of hypertension

    Determinants of flow-mediated outward remodeling in female rodents: respective roles of age, estrogens, and timing

    Get PDF
    OBJECTIVE: Flow (shear stress)-mediated outward remodeling (FMR) of resistance arteries is a key adaptive process allowing collateral growth after arterial occlusion but declining with age. 17-beta-estradiol (E2) has a key role in this process through activation of estrogen receptor alpha (ERalpha). Thus, we investigated the impact of age and timing for estrogen efficacy on FMR. APPROACH AND RESULTS: Female rats, 3 to 18 months old, were submitted to surgery to increase blood flow locally in 1 mesenteric artery in vivo. High-flow and normal-flow arteries were collected 2 weeks later for in vitro analysis. Diameter increased by 27% in high-flow arteries compared with normal-flow arteries in 3-month-old rats. The amplitude of remodeling declined with age (12% in 18-month-old rats) in parallel with E2 blood level and E2 substitution failed restoring remodeling in 18-month-old rats. Ovariectomy of 3-, 9-, and 12-month-old rats abolished FMR, which was restored by immediate E2 replacement. Nevertheless, this effect of E2 was absent 9 months after ovariectomy. In this latter group, ERalpha and endothelial nitric oxide synthase expression were reduced by half compared with age-matched rats recently ovariectomized. FMR did not occur in ERalpha(-/-) mice, whereas it was decreased by 50% in ERalpha(+/-) mice, emphasizing the importance of gene dosage in high-flow remodeling. CONCLUSIONS: E2 deprivation, rather than age, leads to decline in FMR, which can be prevented by early exogenous E2. However, delayed E2 replacement was ineffective on FMR, underlining the importance of timing of this estrogen action

    Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3β signaling

    Get PDF
    Recent studies reported cardioprotective effects of erythropoietin (EPO) against ischemia–reperfusion (I/R) injury through activation of the reperfusion injury salvage kinase (RISK) pathway. As RISK has been reported to be impaired in diabetes and insulin resistance syndrome, we examined whether EPO-induced cardioprotection was maintained in rat models of type 1 diabetes and insulin resistance syndrome. Isolated hearts were obtained from three rat cohorts: healthy controls, streptozotocin (STZ)-induced diabetes, and high-fat diet (HFD)-induced insulin resistance syndrome. All hearts underwent 25 min ischemia and 30 min or 120 min reperfusion. They were assigned to receive either no intervention or a single dose of EPO at the onset of reperfusion. In hearts from healthy controls, EPO decreased infarct size (14.36 ± 0.60 and 36.22 ± 4.20% of left ventricle in EPO-treated and untreated hearts, respectively, p < 0.05) and increased phosphorylated forms of Akt, ERK1/2, and their downstream target GSK-3β. In hearts from STZ-induced diabetic rats, EPO did not decrease infarct size (32.05 ± 2.38 and 31.88 ± 1.87% in EPO-treated and untreated diabetic rat hearts, respectively, NS) nor did it increase phosphorylation of Akt, ERK1/2, and GSK-3β. In contrast, in hearts from HFD-induced insulin resistance rats, EPO decreased infarct size (18.66 ± 1.99 and 34.62 ± 3.41% in EPO-treated and untreated HFD rat hearts, respectively, p < 0.05) and increased phosphorylation of Akt, ERK1/2, and GSK-3β. Administration of GSK-3β inhibitor SB216763 was cardioprotective in healthy and diabetic hearts. STZ-induced diabetes abolished EPO-induced cardioprotection against I/R injury through a disruption of upstream signaling of GSK-3β. In conclusion, direct inhibition of GSK-3β may provide an alternative strategy to protect diabetic hearts against I/R injury

    Synthesis and evaluation of new designed multiple ligands directed towards both peroxisome proliferator-activated receptor-γ and angiotensin II type 1 receptor

    Get PDF
    Because of the complex biological networks, many pathologic disorders fail to be treated with a molecule directed towards a single target. Thus, combination therapies are often necessary, but they have many drawbacks. An alternative consists in building molecules intended to interact with multiple targets, called designed multiple ligands. We followed such a strategy in order to treat metabolic syndrome, by setting up molecules directed towards both type 1 angiotensin II (AT1) receptor and peroxisome proliferator-activated receptor-γ (PPAR-γ). For this purpose, many molecules were prepared by merging both pharmacophores following three different strategies. Their ability to activate PPAR-γ and to block AT1 receptors were evaluated in vitro. This strategy led to the preparation of many new PPAR-γ activating and AT1 blocking molecules. Among them, some exhibited both activities, highlighting the convenience of this approach

    The failed liberalisation of Algeria and the international context: a legacy of stable authoritarianism

    Get PDF
    The paper attempts to challenge the somewhat marginal role of international factors in the study of transitions to democracy. Theoretical and practical difficulties in proving causal mechanisms between international variables and domestic outcomes can be overcome by defining the international dimension in terms of Western dominance of world politics and by identifying Western actions towards democratising countries. The paper focuses on the case of Algeria, where international factors are key in explaining the initial process of democratisation and its following demise. In particular, the paper argues that direct Western policies, the pressures of the international system and external shocks influence the internal distribution of power and resources, which underpins the different strategies of all domestic actors. The paper concludes that analysis based purely on domestic factors cannot explain the process of democratisation and that international variables must be taken into more serious account and much more detailed
    corecore