24 research outputs found

    What have we learned from brucellosis in the mouse model?

    Get PDF
    Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-gamma, TLR9, Myd88, T gamma delta and TNF-beta favor Brucella replication; whereas IL-1 beta, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-gamma and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (>= 10(8) bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model

    Characterization of Brucella abortus O-polysaccharide and core lipopolysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model

    Get PDF
    Brucella abortus rough lipopolysaccharide (LPS) mutants were obtained by transposon insertion into two wbk genes (wbkA [putative glycosyltransferase; formerly rfbU] and per [perosamine synthetase]), into manB (pmm [phosphomannomutase; formerly rfbK]), and into an unassigned gene. Consistent with gene-predicted roles, electrophoretic analysis, 2-keto-3-manno-D-octulosonate measurements, and immunoblots with monoclonal antibodies to O-polysaccharide, outer and inner core epitopes showed no O-polysaccharide expression and no LPS core defects in the wbk mutants. The rough LPS of manB mutant lacked the outer core epitope and the gene was designated manB(core) to distinguish it from the wbk manB(O-Ag). The fourth gene (provisionally designated wa**) coded for a putative glycosyltransferase involved in inner core synthesis, but the mutant kept the outer core epitope. Differences in phage and polymyxin sensitivity, exposure or expression of outer membrane protein, core and lipid A epitopes, and lipid A acylation demonstrated that small changes in LPS core caused significant differences in B. abortus outer membrane topology. In mice, the mutants showed different degrees of attenuation and induced antibodies to rough LPS and outer membrane proteins. Core-defective mutants and strain RB51 were ineffective vaccines against B. abortus in mice. The mutants per and wbkA induced protection but less than the standard smooth vaccine S19, and controls suggested that anti O-polysaccharide antibodies accounted largely for the difference. Whereas no core-defective mutant was effective against B. ovis, S19, RB51, and the wbkA and per mutants afforded similar levels of protection. These results suggest that rough Brucella vaccines should carry a complete core for maximal effectiveness

    Evaluation of PCR and indirect enzyme-linked immunosorbent assay on milk samples for diagnosis of brucellosis in dairy cattle

    Get PDF
    A study was performed to evaluate the previously described PCR (C. Romero, C. Gamazo, M. Pardo, and I. López-Goñi, J. Clin. Microbiol. 33:615-617, 1995) for the diagnosis of brucellosis in dairy cattle. Milk samples from 56 Brucella milk culture-positive cattle and from 37 cattle from Brucella-free herds were examined for Brucella DNA by PCR and for specific antibodies by an indirect enzyme-linked immunosorbent assay (ELISA). The specificities of both tests were 100% when testing the milk samples from Brucella-free cattle. The milk samples from 49 infected cattle were positive by PCR (87.5% sensitivity), and 55 were positive by ELISA (98.2% sensitivity). A PCR-positive sample was negative by ELISA, and 7 ELISA-positive samples were PCR negative, yielding an observed proportion of agreement of 0.91 for the two tests. Although the results suggest that ELISA is a better screening test than PCR, the combined sensitivity of the two assays was 100%, and their simultaneous application could be more useful than one test alone for a rapid screening of brucellosis in dairy cattle

    Antibody and delayed-type hypersensitivity responses to Ochrobactrum anthropi cytosolic and outer membrane antigens in infections by smooth and rough Brucella spp

    Get PDF
    Immunological cross-reactions between Brucella spp. and Ochrobactrum anthropi were investigated in animals and humans naturally infected by Brucella spp. and in experimentally infected rams (Brucella ovis infected), rabbits (Brucella melitensis infected), and mice (B. melitensis and Brucella abortus infected). In the animals tested, O. anthropi cytosolic proteins evoked a delayed-type hypersensitivity reaction of a frequency and intensity similar to that observed with B. melitensis brucellin. O. anthropi cytosolic proteins also reacted in gel precipitation tests with antibodies in sera from Brucella natural hosts with a frequency similar to that observed with B. melitensis proteins, and absorption experiments and immunoblotting showed antibodies to both Brucella-specific proteins and proteins common to Brucella and O. anthropi. No antibodies to O. anthropi cytosolic proteins were detected in the sera of Brucella-free hosts. Immunoblotting with sera of Brucella-infected sheep and goats showed immunoglobulin G (IgG) to Brucella group 3 outer membrane proteins and to O. anthropi proteins of similar molecular weight. No IgG to the O-specific polysaccharide of O. anthropi lipopolysaccharide was detected in the sera of Brucella-infected hosts. The sera of sheep, goats, and rabbits infected with B. melitensis contained IgG to O. anthropi rough lipopolysaccharide and lipid A, and B. ovis and O. anthropi rough lipopolysaccharides showed equal reactivities with IgG in the sera of B. ovis-infected rams. The findings show that the immunoresponse of Brucella-infected hosts to protein antigens is not necessarily specific for brucellae and suggest that the presence of O. anthropi or some related bacteria explains the previously described reactivities to Brucella rough lipopolysaccharide and outer membrane proteins in healthy animals

    Rough vaccines in animal brucellosis: structural and genetic basis and present status

    Get PDF
    Brucellosis control and eradication requires serological tests and vaccines. Effective classical vaccines (S19 in cattle and Rev 1 in small ruminants), however, induce antibodies to the O-polysaccharide of the lipopolysaccharide which may be difficult to distinguish from those resulting from infection and may thus complicate diagnosis. Rough attenuated mutants lack the O-polysaccharide and would solve this problem if eliciting protective immunity; the empirically obtained rough mutants 45/20 and RB51 have been used as vaccines. Strain 45/20 is reportedly unstable and it is not presently used. RB51 is increasingly used instead of S19 in some countries but it is rifampicin resistant and its effectiveness is controversial. Some controlled experiments have found good or absolute protection in adult cattle vaccinated orally (full dose) or subcutaneously (reduced dose) and in one field experiment, RB51 was reported to afford absolute protection to calves and to perform better than S19. Controlled experiments in calves, however, have shown reduced doses of RB51 to be ineffective, full doses only partially effective, and RB51 less effective than S19 against severe challenges. Moreover, other observations suggest that RB51 is ineffective when prevalence is high. RB51 is not useful in sheep and evidence in goats is preliminary and contradictory. Rough mutants obtained by molecular biology methods on the knowledge of the genetics and structure of Brucella lipopolysaccharide may offer alternatives. The B. abortus manBcore (rfbK) mutant seems promising in cattle, and analyses in mice suggest that mutations affecting only the O-polysaccharide result in better vaccines than those affecting both core and O-polysaccharide. Possible uses of rough vaccines also include boosting immunity by revaccination but solid evidence on its effectiveness, safety and practicality is not available

    The identification of wadB, a new glycosyltransferase gene, confirms the branched structure and the role in virulence of the lipopolysaccharide core of Brucella abortus

    Get PDF
    Brucellosis is a worldwide extended zoonosis caused by Brucella spp. These gram-negative bacteria are not readily detected by innate immunity, a virulence-related property largely linked to their surface lipopolysaccharide (LPS). The role of the LPS lipid A and O-polysaccharide in virulence is well known. Moreover, mutation of the glycosyltransferase gene wadC of Brucella abortus, although not affecting O-polysaccharide assembly onto the lipid-A core section causes a core oligosaccharide defect that increases recognition by innate immunity. Here, we report on a second gene (wadB) encoding a LPS core glycosyltransferase not involved in the assembly of the O-polysaccharide-linked core section. As compared to wild-type B. abortus, a wadB mutant was sensitive to bactericidal peptides and non-immune serum, and was attenuated in mice and dendritic cells. These observations show that as WadC, WadB is also involved in the assembly of a branch of Brucella LPS core and support the concept that this LPS section is a virulence-related structure

    Protection from Staphylococcus aureus mastitis associated with poly-N-acetyl beta-1,6 glucosamine specific antibody production using biofilm-embedded bacteria

    Get PDF
    Staphylococcus aureus vaccines based on bacterins surrounded by slime, surface polysaccharides coupled to protein carriers and polysaccharides embedded in liposomes administered together with non-biofilm bacterins confer protection against mastitis. However, it remains unknown whether protective antibodies are directed to slime-associated known exopolysaccharides and could be produced in the absence of bacterin immunizations. Here, a sheep mastitis vaccination study was carried out using bacterins, crude bacterial extracts or a purified exopolysaccharide from biofil

    Brucella abortus depends on pyruvate phosphate dikinase and malic enzyme but not on Fbp and GlpX fructose-1,6-bisphosphatases for full virulence in laboratory models

    Get PDF
    The brucellae are the etiological agents of brucellosis, a worldwide-distributed zoonosis. These bacteria are facultative intracellular parasites and thus are able to adjust their metabolism to the extra- and intracellular environments encountered during an infectious cycle. However, this aspect of Brucella biology is imperfectly understood, and the nutrients available in the intracellular niche are unknown. Here, we investigated the central pathways of C metabolism used by Brucella abortus by deleting the putative fructose-1,6-bisphosphatase (fbp and glpX), phosphoenolpyruvate carboxykinase (pckA), pyruvate phosphate dikinase (ppdK), and malic enzyme (mae) genes. In gluconeogenic but not in rich media, growth of ppdK and mae mutants was severely impaired and growth of the double fbp- glpX mutant was reduced. In macrophages, only the ppdK and mae mutants showed reduced multiplication, and studies with the ppdK mutant confirmed that it reached the replicative niche. Similarly, only the ppdK and mae mutants were attenuated in mice, the former being cleared by week 10 and the latter persisting longer than 12 weeks. We also investigated the glyoxylate cycle. Although aceA (isocitrate lyase) promoter activity was enhanced in rich medium, aceA disruption had no effect in vitro or on multiplication in macrophages or mouse spleens. The results suggest that B. abortus grows intracellularly using a limited supply of 6-C (and 5-C) sugars that is compensated by glutamate and possibly other amino acids entering the Krebs cycle without a critical role of the glyoxylate shunt

    Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export

    Get PDF
    The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. METHODOLOGY/PRINCIPAL FINDINGS: To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas

    Desarrollo de nuevas vacunas frente a brucella ovis: estudio de genes implicados en la síntesis del núclo del lipopolisacárido

    No full text
    Brucella ovis produces a disease that affects sheep causing great economic losses. The only existing vaccine consists of live strain B. melitensis Rev 1. However, due to its ability to cause abortions in cattle, its infectivity in humans and its interference in the diagnosis of B. melitensis, Rev1 employment is prohibited in many areas where B. melitensis has been eradicated. In many of these areas, however, there is a high prevalence of B. ovis. Therefore, the development of new vaccines against infection by B. ovis is a must. Lipopolysaccharide (LPS) is a virulence factor in Brucella. Recently it has been shown that the core of the LPS of B. abortus and B. melitensis is a branched structure, and at least three glycosyltransferases, wadA, wadB and wadC have been described to be involved in its synthesis. The present work found that these three genes are highly conserved in the species B. ovis. While mutation in the gene wadA in B. ovis did not generate alterations in the properties of the cell envelope and did not affect its survival in the murine model, wadB and wadC were involved in the synthesis of the core LPS of B. ovis. Furthermore, mutants wadB and wadC were attenuated and protected from an experimental B. ovis infection in the mouse model. The mutant wadB was the most effective, surpassing even the vaccine strain Rev 1. In silico analysis of genes related to the synthesis of LPS sequences allowed to observe a very high homology between them, greater than initially predicted. The sequence analysis showed that the mutation in the pseudogene manBcore, which generates a loss of two functional domains essential for the enzymatic activity is specific to B. ovis. In addition, B. ovis manBO-Ag gene deficiencies generated in the core of LPS caused alterations in the properties of the outer membrane. The sequence of manBO-Ag gene was identical in all strains of B. ovis studied except B. ovis REO. It is likely that the B. ovis manBO-Ag gene may be supplying manBcore gene activity. The strain B. ovis REO is recommended to obtain the antigen for the diagnosis of B. ovis. When compared with the strain B. ovis PA, differences in the cell envelope properties were found, compatible with the deletion of the gene manBO-Ag
    corecore