6 research outputs found

    Cloning and sequence analysis of cDNA for a human homolog of eubacterial ATP-dependent Lon proteases

    Get PDF
    AbstractOverlapping cDNA clones containing mRNA for a putative Lon protease (LonHS) were isolated from cDNA libraries prepared from human brain poly(A)+ RNA. The determined nucleotide sequence contains a 2814-bp open reading frame with two potential initiation codons (positions 62–64 and 338–340). The 5'-terminal 337-nucleotide fragment of LonHS mRNA is highly enriched with G and C nucleotides and could direct synthesis of the LonHS N-terminal domain. More likely this region promotes initiation of protein synthesis from the second AUG codon in a cap-independent manner. The amino acid sequence initiated at the second AUG codon includes 845 residues, over 30% of which are identical to those of eubacterial Lon proteases. Residues of the ‘A’ and ‘B’ motifs of NTP-binding pattern and a plausible catalytic serine residue are conserved in LonHS. Northern blot analysis revealed LonHS mRNA in lung, duodenum, liver and heart, but not in thymus cells

    Drug Repurposing of the Unithiol: Inhibition of Metallo-β-Lactamases for the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections

    No full text
    The increasing antibiotic resistance is a clinical problem worldwide. Numerous Gram-negative bacteria have already become resistant to the most widely used class of antibacterial drugs, β-lactams. One of the main mechanisms is inactivation of β-lactam antibiotics by bacterial β-lactamases. Appearance and spread of these enzymes represent a continuous challenge for the clinical treatment of infections and for the design of new antibiotics and inhibitors. Drug repurposing is a prospective approach for finding new targets for drugs already approved for use. We describe here the inhibitory potency of known detoxifying antidote 2,3-dimercaptopropane-1-sulfonate (unithiol) against metallo-β-lactamases. Unithiol acts as a competitive inhibitor of meropenem hydrolysis by recombinant metallo-β-lactamase NDM-1 with the KI of 16.7 µM. It is an order of magnitude lower than the KI for l-captopril, the inhibitor of angiotensin-converting enzyme approved as a drug for the treatment of hypertension. Phenotypic methods demonstrate that the unithiol inhibits natural metallo-β-lactamases NDM-1 and VIM-2 produced by carbapenem-resistant K. pneumoniae and P. aeruginosa bacterial strains. The 3D full atom structures of unithiol complexes with NDM-1 and VIM-2 are obtained using QM/MM modeling. The thiol group is located between zinc cations of the active site occupying the same place as the catalytic hydroxide anion in the enzyme–substrate complex. The sulfate group forms both a coordination bond with a zinc cation and hydrogen bonds with the positively charged residue, lysine or arginine, responsible for proper orientation of antibiotics upon binding to the active site prior to hydrolysis. Thus, we demonstrate both experimentally and theoretically that the unithiol is a prospective competitive inhibitor of metallo-β-lactamases and it can be utilized in complex therapy together with the known β-lactam antibiotics

    Crystal structures of the molecular class A β-lactamase TEM-171 and its complexes with tazobactam

    No full text
    The resistance of bacteria to β-lactam antibiotics is primarily caused by the production of β-lactamases. Here, novel crystal structures of the native β-lactamase TEM-171 and two complexes with the widely used inhibitor tazobactam are presented, alongside complementary data from UV spectroscopy and fluorescence quenching. The six chemically identical β-lactamase molecules in the crystallographic asymmetric unit displayed different degrees of disorder. The tazobactam intermediate was covalently bound to the catalytic Ser70 in the trans-enamine configuration. While the conformation of tazobactam in the first complex resembled that in published β-lactamase–tazobactam structures, in the second complex, which was obtained after longer soaking of the native crystals in the inhibitor solution, a new and previously unreported tazobactam conformation was observed. It is proposed that the two complexes correspond to different stages along the deacylation path of the acyl-enzyme intermediate. The results provide a novel structural basis for the rational design of new β-lactamase inhibitors
    corecore