239 research outputs found
Path homology and temporal networks
We present an algorithm to compute path homology for simple digraphs, and use
it to topologically analyze various small digraphs en route to an analysis of
complex temporal networks which exhibit such digraphs as underlying motifs. The
digraphs analyzed include all digraphs, directed acyclic graphs, and undirected
graphs up to certain numbers of vertices, as well as some specially constructed
cases. Using information from this analysis, we identify small digraphs
contributing to path homology in dimension for three temporal networks, and
relate these digraphs to network behavior. We conclude that path homology can
provide insight into temporal network structure and vice versa
Reverse Khas'minskii condition
The aim of this paper is to present and discuss some equivalent
characterizations of p-parabolicity in terms of existence of special exhaustion
functions. In particular, Khas'minskii in [K] proved that if there exists a
2-superharmonic function k defined outside a compact set such that , then R is 2-parabolic, and Sario and Nakai in [SN] were
able to improve this result by showing that R is 2-parabolic if and only if
there exists an Evans potential, i.e. a 2-harmonic function with \lim_{x\to \infty} \E(x)=\infty. In this paper, we will prove a
reverse Khas'minskii condition valid for any p>1 and discuss the existence of
Evans potentials in the nonlinear case.Comment: final version of the article available at http://www.springer.co
Nonrelativistic hydrogen type stability problems on nonparabolic 3-manifolds
We extend classical Euclidean stability theorems corresponding to the
nonrelativistic Hamiltonians of ions with one electron to the setting of non
parabolic Riemannian 3-manifolds.Comment: 20 pages; to appear in Annales Henri Poincar
Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights
This is the fourth article of our series. Here, we study weighted norm
inequalities for the Riesz transform of the Laplace-Beltrami operator on
Riemannian manifolds and of subelliptic sum of squares on Lie groups, under the
doubling volume property and Gaussian upper bounds.Comment: 12 pages. Fourth of 4 papers. Important revision: improvement of main
result by eliminating use of Poincar\'e inequalities replaced by the weaker
Gaussian keat kernel bound
An estimate for the Morse index of a Stokes wave
Stokes waves are steady periodic water waves on the free surface of an
infinitely deep irrotational two dimensional flow under gravity without surface
tension. They can be described in terms of solutions of the Euler-Lagrange
equation of a certain functional. This allows one to define the Morse index of
a Stokes wave. It is well known that if the Morse indices of the elements of a
set of non-singular Stokes waves are bounded, then none of them is close to a
singular one. The paper presents a quantitative variant of this result.Comment: This version contains an additional reference and some minor change
Sub-Gaussian short time asymptotics for measure metric Dirichlet spaces
This paper presents estimates for the distribution of the exit time from
balls and short time asymptotics for measure metric Dirichlet spaces. The
estimates cover the classical Gaussian case, the sub-diffusive case which can
be observed on particular fractals and further less regular cases as well. The
proof is based on a new chaining argument and it is free of volume growth
assumptions
Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry
Due to the isotropy -dimensional hyperbolic space, there exist a
spherically symmetric fundamental solution for its corresponding
Laplace-Beltrami operator. On the -radius hyperboloid model of
-dimensional hyperbolic geometry with and , we compute
azimuthal Fourier expansions for a fundamental solution of Laplace's equation.
For , we compute a Gegenbauer polynomial expansion in geodesic polar
coordinates for a fundamental solution of Laplace's equation on this
negative-constant sectional curvature Riemannian manifold. In three-dimensions,
an addition theorem for the azimuthal Fourier coefficients of a fundamental
solution for Laplace's equation is obtained through comparison with its
corresponding Gegenbauer expansion.Comment: arXiv admin note: substantial text overlap with arXiv:1201.440
A Klein Gordon Particle Captured by Embedded Curves
In the present work, a Klein Gordon particle with singular interactions
supported on embedded curves on Riemannian manifolds is discussed from a more
direct and physical perspective, via the heat kernel approach. It is shown that
the renormalized problem is well-defined, and the ground state energy is unique
and finite. The renormalization group invariance of the model is discussed, and
it is observed that the model is asymptotically free.Comment: Published version, 13 pages, no figures. arXiv admin note:
substantial text overlap with arXiv:1202.356
The mean curvature of cylindrically bounded submanifolds
We give an estimate of the mean curvature of a complete submanifold lying
inside a closed cylinder in a product Riemannian manifold
. It follows that a complete hypersurface of given
constant mean curvature lying inside a closed circular cylinder in Euclidean
space cannot be proper if the circular base is of sufficiently small radius. In
particular, any possible counterexample to a conjecture of Calabion complete
minimal hypersurfaces cannot be proper. As another application of our method,
we derive a result about the stochastic incompleteness of submanifolds with
sufficiently small mean curvature.Comment: First version (December 2008). Final version, including new title
(February 2009). To appear in Mathematische Annale
- âŠ