-

View metadata, citation and similar papers at core.ac.uk brought to you byf‘f CORE

provided by Crossref

Integral Equations
and Operator Theory

@ CrossMark

© The Author(s) This article is an open access

Published online April 26, 2017 |
publication 2017

Spectral Bounds for the Torsion Function
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Abstract. Let € be an open set in Euclidean space R™, m = 2,3, ..., and
let v, denote the torsion function for €. It is known that vq is bounded if
and only if the bottom of the spectrum of the Dirichlet Laplacian acting
in £2(2), denoted by A(Q), is bounded away from 0. It is shown that
the previously obtained bound [|va||zee()A(€2) > 1 is sharp: for m €
{2,3,...}, and any € > 0 we construct an open, bounded and connected
set Qc C R™ such that ||vg, || zeo (0 )A(Qe) < 14€. An upper bound for vg
is obtained for planar, convex sets in Euclidean space R?, which is sharp
in the limit of elongation. For a complete, non-compact, m-dimensional
Riemannian manifold M with non-negative Ricci curvature, and without
boundary it is shown that v is bounded if and only if the bottom of the
spectrum of the Dirichlet-Laplace-Beltrami operator acting in £%(€) is
bounded away from O.
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1. Introduction

Let ©Q be an open set in R™, and let A be the Laplace operator acting in
L*(R™). Let (B(s),s > 0;P,,z € R™) be Brownian motion on R™ with
generator A. For z € ) we denote the first exit time, and expected lifetime
of Brownian motion by

To=inf{s >0: B(s) ¢ Q},
and
va(x) =E.[Tq], x € Q, (1)

respectively, where E, denotes the expectation associated with P,. Then vq
is the torsion function for €2, i.e. the unique solution of

—Av=1,ve€ H}DQ). (2)

The bottom of the spectrum of the Dirichlet Laplacian acting in £2(2) is
denoted by
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JAEES
Q) = inf 0

peHE(Q)\{0} / o
Q

It was shown in [1,2] that ||va||ze(q) is finite if and only if A(Q2) > 0. More-
over, if A(Q2) > 0, then

M) < lvall g () < (4 + 3mlog2)A(Q) . (4)

(3)

The upper bound in (4) was subsequently improved (see [3]) to
1
ool oy < gl + em? + N@),
where
¢ = (5(4+10g2))""%.

In Theorem 1 below we show that the coefficient 1 of A(©2)~! in the left-hand
side of (4) is sharp.

Theorem 1. Form € {2,3,...}, and any € > 0 there exists an open, bounded,
and connected set Q. C R™ such that

[va. | g (0.) M) < 1+ €. (5)

The set €. is constructed explicitly in the proof of Theorem 1.
It has been shown by L. E. Payne (see (3.12) in [4]) that for any convex,
open © C R™ for which A\(Q) > 0,

71.2

o0 ey MO = T, (6)
with equality if € is a slab, i.e. the connected, open set, bounded by two
parallel (m — 1)-dimensional hyperplanes. Theorem 2 below shows that for

any sufficiently elongated, convex, planar set (not just an elongated rectangle)
lvall o @) A(£2) is approximately equal to %2. We denote the width and the
diameter of a bounded open set by w() (i.e. the minimal distance of two
parallel lines supporting ), and diam(Q2) = sup{|z —y| : © € Q,y € Q}

respectively.

Theorem 2. If () is a bounded, planar, open, convex set with width w(S2), and
diameter diam(SY), then

72 o [ w(©Q) \?
<™ gz () VY
ool ooy M) < & <1+7 # (s

In the Riemannian manifold setting we denote the bottom of the spec-
trum of the Dirichlet—Laplace—Beltrami operator by (3). We have the follow-
ing.

Theorem 3. Let M be a complete, non-compact, m-dimensional Riemannian
manifold, without boundary, and with non-negative Ricci curvature. There
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erists K < oo, depending on M only, such that if Q@ C M is open, and
A(Q2) > 0, then

M) < [vgll g ) < 2073 RREN Q)Y (7)
where K is the constant in the Li-Yau inequality in (35) below.

The proofs of Theorems 1, 2, and 3 will be given in Sects. 2, 3 and 4
respectively.

Below we recall some basic facts on the connection between torsion
function and heat kernel. It is well known (see [5-7]) that the heat equation
ou(z;t)

ot 7
has a unique, minimal, positive fundamental solution pas(x,y;t), where x €
M,y € M, t > 0. This solution, the heat kernel for M, is symmetric in z,y,
strictly positive, jointly smooth in =,y € M and t > 0, and it satisfies the
semigroup property

Au(z;t) =

reM, t>0,

par(e,yis + 1) = / d par(, 2 8)pat (2, i 1),
M

for all z,y € M and t,s > 0, where dz is the Riemannian measure on M. See,
for example, [8] for details. If  is an open subset of M, then we denote the
unique, minimal, positive fundamental solution of the heat equation on 2 by
pa(x,y;t), where € Q,y € Q,¢t > 0. This Dirichlet heat kernel satisfies,

pa(z,y;t) <pu(z,y;t), v € Qy € Q1> 0.
Define ug : © x (0,00) — R by

ug(x;t) = / dy po(x, y; t).
Q
Then,
ug(z;t) = Pu[Tq > ],
and by (1)

'UQ(.T) = /OOO dt P, [TQ > t] = /OOO dt /Qdypg(x,y;t). (8)

It is straightforward to verify that v as in (8) satisfies (2).

2. Proof of Theorem 1

We introduce the following notation. Let Cr, = (—%, %)m/Q be the open cube
with measure L™, and delete from Cp, N™ closed balls with radii J, where
each ball B(¢;;0) is positioned at the centre of an open cube Q; with measure
(L/N)™. These open cubes are pairwise disjoint, and contained in Cp. Let

0<d < 5%, and put (Fig. 1)
Qs.nv.p = Cr — U B(ci; ).

The set 5n,1, also features in [9], where the sharpness of an inequality due
to Pélya has been established.
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FIGURE 1. Qs N with m =2, N =10,0 = &

Below we will show that for any € > 0 we can choose §, N such that

09551 HE”(Sla,N,L) A Qsnp) <l+e

In Lemma 4 below we show that A\(Qs 1) is approximately equal to
the first eigenvalue, 1 p(0;5),z/n, of the Laplacian with Neumann boundary
conditions on dCp,y, and with Dirichlet boundary conditions on 9B(0;4).
The requirement i1 (o;5),./5 not being too small stems from the fact that
the approximation of replacing the Neumann boundary conditions on C, is
a surface effect which should not dominate the leading term 1y p(0;5),./n-

Lemma 4. If§ < ﬁ, N > 10, and % < p1,B(0:6),1/N» then

5\"( N 1
A(Qs.n,L) < p1,B(0ss),L/N T 32m(4) (LQ + WM,B(@;&),L/N>~

Proof. Let ©1 p(o;5),0/n be the first eigenfunction (positive) corresponding
to 11,B(0:),./N > and normalised in EZ(C’L/N — B(0;9)). In order to prove the
lemma we construct a test function by periodically extending 1 p(o:s),r/n
to all cubes Q1,...Qnm of Qs n 1. We denote this periodic extension by f.
We define

CL,N = CL(I—%)'
So Cp n is the sub-cube of Cp with the outer layer of cubes of size L/N

removed. Let
P B diSt(zC,CL,N)>
/ (1 ray )t
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Then f € H¢(Qs.n,1), and
1oy = [ =V -2, o)
Cr,N

since f restricted to any of the cubes Q; in {25 n 1, is normalised. Furthermore

: 2 2
pif < (1- B L)Y 1 sy o ((B0) 124 S0

L/(aN)
AN\? 8N
< |Df‘2+ 7 1CL7CL,Nf2+7]‘CL7CL,Nf|Df|'
L L

Hence

1%MJDﬂ2<L%MJDﬂ2+<ﬁ7)iLLCLNF
S o) ()

m m o ((AN\? 8N
= N"u,Be),L/Nn + (N — (N - 2) )((7) +T(N1,B(o;6),L/N)1/2)

4AN\?
< N™p1 possy,Ln + (N™ = (N =2)"™) ((7) + 8N1/2N1,B(0;5),L/N)7

(10)

where we have used the last hypothesis in the lemma. By (9), (10), the
Rayleigh-Ritz variational formula, and the hypothesis N > 10,

A(Qs,n,1) < 11,B(0:5),L/N

N™ — (N —2)m ([4AN\?
+(N_2W,<(L> +@NUZ*DMB&&MN)

5\"( N 1
< p1,B(0;8),L/N +32m 1 7z T yizhLB8).L/N |- (11)

O

To obtain an upper bound for [[va,  , [l o (s v, )> We change the Dirich-
let boundary conditions on 0Cp to Neumann boundary conditions. This
increases the corresponding heat kernel, torsion function, and £ norm
respectively. By periodicity, we have that

HUQ&N,LHL@(QM\,,L) = ||77CL/NfB(0;6)||Lw(cL/N—B(o;5))v (12)
where v¢, /n—B(0;0) 18 the torsion function with Neumann boundary con-
ditions on dCp/n, and Dirichlet boundary conditions on 9B(0;4). Denote
the spectrum of the corresponding Laplacian by {u; := p; p(o:s),0/N,] =
1,2,...}, and let {p; := 1, B(os),0/N,J = 1,2,...} denote a corresponding
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orthonormal basis of eigenfunctions. We denote by 75 n/1 (2, y;t), v € Cp/n —
B(0;6),y € Cr/ny — B(0;9),t > 0 the corresponding heat kernel. Then

oo

mon/L(@,yit) = > e (x)e; (y), (13)

Jj=1

and

{)CL/N*B(ON” (.’E)

(oo}
:/ dt / dy ﬂg’N/L(m,y;t)((pll(y) +1-— Ql(y)>
CL/N—B(O~6) o1 lla |
1
_ Lok / dt / dy ms Ny (2, y; )(1— sm(y))
M1 H<P1|| Cr/n—DB(0;6) ||501||

74—/ dt / dy 75,/ (2, Y3 1)

v Cr/n—B(08)
o)

+ / dt / dy Wé,N/L(m,y;t)<1_ sol(y)>
T CL/N—B(0;9) ol

1 o0
< — +T+/ dt / dy 7T(S,N/L(%y;t)<1 - 501(3/))’ (14)
M1 T Cr/n—B(08) el

where [[o1 = [[¢1llz~ (¢, y—B(0:6))- By (13), we have that the third term in
the right-hand side of (14) equals

Ty, , _eily)
Zu eito) [ L/NB(O;(s)dW’(y)(l mn)' (15)

The term with j =1 in (15) is bounded from above by

el / ™ ( )
Cr/n—B(0:8) ||S0 |

Tl / (lorll - 1)
Cr/n—B(0

<ur (m (£) —1>,

where we used the fact that 1 = ICL/NfB(O;cS) ©? < el fCL/N—B(O;é) 1.
It was shown on p.586, lines -3,-4, in [9] (with appropriate adjustment in
notation) that

|| ||2 _ E m . mL2 -1 -
©1 s L S 3€8N2 ) s =2 U,

provided the last term in the round brackets is non-negative. The optimal
choice for s gives that

5 [(N\™ (4mpy)Y/2LN\ 3eN?
< (=) (11— = =
lenll™ < <L) ( BelZN ) 0 M S anre

IN
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By further restricting the range for pq, we have that the first term with 7 =1
in (15) is then bounded from above by

. 2L(m,u1/(3eN2))1/2 <(2m)1/2L 3eN?

= ) MIS . (16
D= 2L (mpn /(3eN))? T ulPN 16mL* !

The terms with 7 > 2 in (15) give, by Cauchy—Schwarz for both the series in
J, and the integral over Cr,y — B(0;6), a contribution

T/"‘JSD )/ (pj(l_wl>’
Cr/n—B(06) llll

-1 “Tuj |, )
<Y pyta) | o
jgg ! Cr/n—B(0;9) !
) I m/2 , o0 . 1/2 , o . ) 1/2
(B (Em) (S )
j=2 j=2
B I m/2 0o o 1/2 1/2
</~L21<N> (Ze TW) (ms,n/L(x,2;T)) 2, (17)
j=2

To bound the first series in the right-hand side of (17), we note that the p;’s
are bounded from below by the Neumann eigenvalues of the cube Cp/n. So
choosing T'= (L/N)? we get that

0 1/2 00 m/2 m/2
—Lzlu.j/N2 < (1 —m?5? < é
(X ) <(1+x <(5
Jj=2 Jj=1

Similarly to the proof of Lemma 3.1 in [9], we have that

(msnyz (22 L2 /N2 Y2 < (monyn (2,23 L2 /N2) )2

N m/2 o . m/2
< (L> (1+226 J )
j=1
m/2 m/2
4 N
<) (5) -

Finally, yi5 > == together with (12), (14), (16), (17), (18), and the choice
= (L/N)? gives that

1y 2m)'2L | (4\™ L* 3eN?
WZN 3) N2 M= Temre
(19)

||'UQs,N,L Hﬁoo(Q(S,N,L) S py
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Proof of Theorem 1. Let 1 < ae < 2. By (11) and (19), we have that
5\""( N 1
A (Q(S,N7L) HFUQ,&N,L HL"OO(Q&N,L) S <,u1 + 32m<4) (L2 + N1/2 ﬂl))

L @m)Y2L (4" L?
oy T\s) )

(20)
provided
N << 3eN? '
L2 — 77 7 16mL?

First consider the planar case m = 2. Recall Lemma 3.1 in [9]: for § <
L/(6N),

N (g L T o SN (g E - 21
100L2< g26N> —“LB(O?W/N—(4—7r)L2(°g25N) - @
Let
5% 1= 6*(a, N, L) = 2 e=N*"" (22)
N

where 1 < a < 2. Let Ny € N be such that for all N > Ny, §* < L/(6N). We
now use (21) to see that there exists C' > 1 such that
C 1? < 1,B(0;6%),L/N = Cﬁ~ (23)

(In fact C' = max{100,87/(4 — 7)}). We subsequently let N3 € N be such
that for all N > No,

N ol N e
L2 — L2 — 7 L2 — 16mL?

By (20), (23), and all N > max{Ny, N2} we have that
A(le*,N,L)”UQg*,N,L ||£OO(QJ*,N,L) <1+ C(Nl_a + N(a_2)/2)’ (24)

where C depends on C and on m only. Finally, we let N3 € N be such that
for all N > N3,

C(N'™ + N(=2/2) < ¢,

We conclude that (5) holds with Q. = Qs+ n  with 6* given by (22), and
N Z maX{Nl, Ng, Ng}

Next consider the case m = 3,4,.... We apply Lemma 3.2 in [9] to the
case K = B(0;0), and denote the Newtonian capacity of K by cap(K). Then
cap(B(0;0)) = £, 6™ 2, where k,, is the Newtonian capacity of the ball with
radius 1 in R™. Then Lemma 3.2 gives that there exists C' > 1 such that

N\™ N\™
c! (L) §m < H1,B(0:6),L/N) < C(L) &2, (25)

provided
1

m(sm—2 .
" 16

(L/N)™ (26)
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We choose
6 :=6*(a, N, L) = LN(a—m)/(m=2), (27)

This gives inequality (23) by (25). The requirement (26) holds for all N > Ny,
where N; is the smallest natural number such that N127°‘ > 16K,,. The
remainder of the proof follows the lines below (23) with the appropriate
adjustment of constants, and the choice of §* as in (27). O

We note that the choice a = 3 in either (22) or in (27) gives, by (24),
the decay rate

N5 5.0) 150 ey ) STH2ENTVE28)

3. Proof of Theorem 2

In view of Payne’s inequality (6) it suffices to obtain an upper bound for
llvallze=@)A(£2). We first observe, that by domain monotonicity of the tor-
sion function, vg is bounded by the torsion function for the (connected) set
bounded by the two parallel lines tangent to Q at distance w(f2). Hence

w()?
[vall zo o) < —5 (29)

In order to obtain an upper bound for A(Q2), we introduce the following
notation. For a planar, open, convex set, with finite measure, we let z1, zo be
two points on the boundary of {2 which realise the width. That is there are two
parallel lines tangent to 0€, at z; and 25 respectively, and at distance w({2).
Let the z-axis be perpendicular to the vector z1 zo, containing the point %(z1+
z9). We consider the family of line segments parallel to the x-axis, obtained
by intersection with €, and let I1, l> be two points on the boundary of 2 which
realise the maximum length L of this family. The quadrilateral with vertices,
z1, 29,11, 2 is contained in €. This quadrilateral in turn contains a rectangle
with side-lengths h, and (1 — ﬁ)L respectively, where h € [0,w(Q)) is
arbitrary. Hence, by domain monotonicity of the Dirichlet eigenvalues, we
have that

MQ) < 7?h™2 472 (1 - w?@) _2L_2.

Minimising the right-hand side above with respect to h gives that
(w()r2)"?
AR ICE
L+ (w(Q))

AQ) < wzg),z (1 + (“’(Lm>2/3>3. (30)

It follows that
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As w(Q) < L we obtain by (30) that

2 w 2/3
A(Q) < WL (1 +7 ((LQ)> ) . (31)

In order to complete the proof we need the following.

Lemma 5. If Q is an open, bounded, convexr set in R?, and if L is the length
of the longest line segment in the closure of ), perpendicular to zyzo, then

diam(Q)) < 3L. (32)

Proof. Let dy, dy € 09 such that |d; — d2| = diam(€2). We denote the projec-
tions of dy, ds onto the line through z1, zo by eq, es respectively. Let z be the
intersection of the lines through z1, zo and di, ds respectively. Then, by the
maximality of L, we have that |dy — e1| < L,|ds — e2| < L. Furthermore, by
convexity, |e; — z| + |ea — z| < w(Q2). Hence,

|dy —da| < |dy —er|+ |e1 — 2|+ |da — ea] + |e2 — 2| < 2L +w(Q) < 3L.

U
By (31), we have that
2 w(Q) 2/3
MQ) < 1+7.3%3 [ ——~ .
@)= Ty ( + diam ()
This implies Theorem 2 by (29). O

4. Proof of Theorem 3

We denote by d : M x M — RT the geodesic distance associated to (M, g).
Forx € M, R >0, B(z;R) = {y € M : d(z,y) < R}. For a measurable set
A C M we denote by |A] its Lebesgue measure. The Bishop—Gromov Theo-
rem (see [10]) states that if M is a complete, non-compact, m-dimensional,
Riemannian manifold with non-negative Ricci curvature, then for p € M, the
‘BT(JLJLT)‘ is monotone decreasing. In particular

[B(pira)| _ <T2

|B(p;r)| = \m
Corollary 3.1 and Theorem 4.1 in [11], imply that if M is complete with non-

negative Ricci curvature, then for any Dy > 2 and 0 < D; < 2 there exist
constants 0 < C; < Cy < oo such that for all x € M, y € M, t >0,

map 7 —

> , 0<ry <. (33)

c e—d(@,y)?/(2D1t) ( )
1 <pum(z,y;t
(1B(a; 1/2)|| B(y; 11/2)]) /2

efd(m’y)2/(2D2t)

(1B t1/2)[|B(y; t1/2)])

< Oy

5 (39)
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Finally, since by (33) the measure of any geodesic ball with radius r is
bounded polynomially in 7, the theorems of Grigor’yan in [6] imply stochastic
completeness. That is, for all x € M, and all t > 0,

/ dypa(z,y:t) = 1.
M

Proof of Theorem 3. We choose D1 = 1, Dy = 3 in (34), and define the
corresponding number K = max{Cs, C;'}. Then

K1em /20 < (1B /) |Bly: 72)))  pas . :t) < Koo/ 60,
(35)

Let ¢ € M be arbitrary, and let R > 0 be such that Q(q; R) :=
B(g;R) N Q # (. The spectrum of the Dirichlet Laplacian acting in
L?(Q(g; R)) is discrete. Denote the bottom of this spectrum by A(Q(g; R)).

Then A(Q2(g; R)) > A(€2). By the spectral theorem, monotonicity of Dirichlet
heat kernels, and the Li-Yau bound (35), we have that

Pa(q;R) (LL', &5 t) < e_tA(Q(q;R))/QpQ(q;R) (1‘, €Z; t/2)
< e MNUGRED/2p ) (2 251 /2)
< KemMO@RI2|B(a; (¢/2)?)) 71, (36)

By the semigroup property and the Cauchy—Schwarz inequality, for any open
set ) C M, we have that

pn(x,y;t)=/Qdzpn(w,Z;t/2)pQ(Z,y;t/2)

<(/ dzpéu,z;t/z))l/z ([ sttt

= (palz.z:t) paly.y;1)) . (37)

We obtain by (36), (37) (for Q = Q(q; R)), and po(qgr) (2, y5t) < par(, y;t),
that

1/2

1/4
PQ(q;R) (JJ, Y; t) < (pQ(q;R) (l‘, xZ; t) PQ(q;R) (ya Y; t)) / pM(xv Y; t)1/2

< K2 AO@R/A(1B(a; (¢/2)2)1B(y; (¢/2)2))) it (@, ys ).
(38)
By (38) and (35), we have that

Pagem) (2,53 t) < Ke™MA@RA(| B (¢/2)1/2)|| Bly; (¢/2)1/)]) 7!
x (|B(x; £1/2)|| B(y; t1/2)I)_1/4e*d(z’y)2/(12t)~
(39)
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By the Li-Yau lower bound in (35), we can rewrite the right-hand side of (39)
to yield,

< K2 Q(aR)/4

Pocar) (@, Y3 t) pu(,y; 6t)

(1B 60 ) 1B (60))])

(1Bl (1/2)12) 1By (4/2)2) 1B £/2) | Bly; 11/2)) /+
(40)

By Bishop—Gromov (33), we have that the volume quotients in the right-hand
side of (40) are bounded by 23™/4 . 3™/2 uniformly in 2 and y. Hence

Pogr) (@, yst) < 2874 3mI2 2= NUGR /Ay (00 4 6t).

Since manifolds with non-negative Ricci curvature are stochastically com-
plete, we have that

/ dy pog;ry (@, y;t) < 2°m/4 . 3m/2 K2~ MG R) /4 / dy par (, y; 6t)
Q(q;R) M
_ 23m/4 . 3m/2K267t)\(Q(q;R))/4'

Integrating the inequality above with respect to ¢ over [0, c0) yields,
’UQ(q;R)(x) < 2(3m+8)/4 . 3771/2](2/\(9((17 R))—l < 2(3m+8)/4 . 3m/2K2)\(Q)_1.

Finally letting R — oo in the left-hand side above yields the right-hand side

of (7).
The proof of the left-hand side of (7) is similar to the one in Theorem
5.3 in [1] for Euclidean space. We have that

vg(q;R)(x):/ dt/ dy pa(g;r) (T, Y3 1). (41)
0 Q(g;R)

We first observe that |Q(q; R)| < oo, and so the spectrum of the Dirichlet
Laplacian acting in L?(Q(g; R)) is discrete and is denoted by {\;((q; R)),j €
N}, with a corresponding orthonormal basis of eigenfunctions {¢; a(4r),J €
N}. These eigenfunctions are in £>2(£2(¢; R)). Then, by (41) and the eigen-
function expansion of the Dirichlet heat kernel for Q(g; R), we have that

801,9((;;1%) (y)

106 | 2~ @gny)

V(q:R) (T) Z/ dt/ dy po(q:r) (T, Y5 1)
0 Q(q;R)

= /°° dt e~ tM (QaR) P1.0(R) (T)
i P10t | e~ amy)
P1.0(¢:8) (7)

=M(QgR)! '
ler.o@m) | ceogm)

(42)

First taking the supremum over all 2z € Q(¢; R) in the left-hand side of (42),
and subsequently taking the supremum over all such x in the right-hand side
of (42) gives
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||UQ(Q§R) ||£°°(Q(q;R)) = )\(Q(q’ R))il' (43)

Observe that the torsion function is monotone increasing in R. Taking the
limit R — oo in the left-hand side of (43), and subsequently in the right-hand
side of (43) completes the proof. O
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