492 research outputs found

    Low Energy Effective Action in N=2 Yang-Mills as an Integrated Anomaly

    Get PDF
    Based on chiral ring relations and anomalies, as described by Cachazo, Douglas, Seiberg and Witten, we argue that the holomorphic effective action in N=2 Yang-Mills theory can be understood as an integrated U(1) anomaly from a purely field theory point of view. In particular, we show that the periods of the Riemann surface arising from the generalized Konishi anomaly can be given a physical interpretation without referring to special geometry. We also discuss consequences for the multi-instanton calculus in N=2 Yang-Mills theory.Comment: 25 pages, 2 figures ; v2: reference adde

    Slow-light enhanced light-matter interactions with applications to gas sensing

    Full text link
    Optical gas detection in microsystems is limited by the short micron scale optical path length available. Recently, the concept of slow-light enhanced absorption has been proposed as a route to compensate for the short path length in miniaturized absorption cells. We extend the previous perturbation theory to the case of a Bragg stack infiltrated by a spectrally strongly dispersive gas with a narrow and distinct absorption peak. We show that considerable signal enhancement is possible. As an example, we consider a Bragg stack consisting of PMMA infiltrated by O2. Here, the required optical path length for visible to near-infrared detection (~760 nm) can be reduced by at least a factor of 10^2, making a path length of 1 mm feasible. By using this technique, optical gas detection can potentially be made possible in microsystems

    Multiloop Superstring Amplitudes from Non-Minimal Pure Spinor Formalism

    Get PDF
    Using the non-minimal version of the pure spinor formalism, manifestly super-Poincare covariant superstring scattering amplitudes can be computed as in topological string theory without the need of picture-changing operators. The only subtlety comes from regularizing the functional integral over the pure spinor ghosts. In this paper, it is shown how to regularize this functional integral in a BRST-invariant manner, allowing the computation of arbitrary multiloop amplitudes. The regularization method simplifies for scattering amplitudes which contribute to ten-dimensional F-terms, i.e. terms in the ten-dimensional superspace action which do not involve integration over the maximum number of Ξ\theta's.Comment: 23 pages harvmac, added acknowledgemen

    Disorder driven quantum critical behavior in CuGeO3 doped with magnetic impurity

    Full text link
    For the CuGeO3 doped with 1% of Fe the quantum critical behavior in a wide temperature range 1-40 K is reported. The critical exponents for susceptibility along different crystallographic axes are determined: a=0.34 (B//a and B//c) and a=0.31 (B//b). New effect of the frequency dependence of the critical exponent is discussed.Comment: Submitted to SCES0

    Prepotential and Instanton Corrections in N=2 Supersymmetric SU(N_1)xSU(N_2) Yang Mills Theories

    Get PDF
    In this paper we analyse the non-hyperelliptic Seiberg-Witten curves derived from M-theory that encode the low energy solution of N=2 supersymmetric theories with product gauge groups. We consider the case of a SU(N_1)xSU(N_2) gauge theory with a hypermultiplet in the bifundamental representation together with matter in the fundamental representations of SU(N_1) and SU(N_2). By means of the Riemann bilinear relations that hold on the Riemann surface defined by the Seiberg--Witten curve, we compute the logarithmic derivative of the prepotential with respect to the quantum scales of both gauge groups. As an application we develop a method to compute recursively the instanton corrections to the prepotential in a straightforward way. We present explicit formulas for up to third order on both quantum scales. Furthermore, we extend those results to SU(N) gauge theories with a matter hypermultiplet in the symmetric and antisymmetric representation. We also present some non-trivial checks of our results.Comment: 21 pages, 2 figures, minor changes and references adde

    The Curve of Compactified 6D Gauge Theories and Integrable Systems

    Full text link
    We analyze the Seiberg-Witten curve of the six-dimensional N=(1,1) gauge theory compactified on a torus to four dimensions. The effective theory in four dimensions is a deformation of the N=2* theory. The curve is naturally holomorphically embedding in a slanted four-torus--actually an abelian surface--a set-up that is natural in Witten's M-theory construction of N=2 theories. We then show that the curve can be interpreted as the spectral curve of an integrable system which generalizes the N-body elliptic Calogero-Moser and Ruijsenaars-Schneider systems in that both the positions and momenta take values in compact spaces. It turns out that the resulting system is not simply doubly elliptic, rather the positions and momenta, as two-vectors, take values in the ambient abelian surface. We analyze the two-body system in some detail. The system we uncover provides a concrete realization of a Beauville-Mukai system based on an abelian surface rather than a K3 surface.Comment: 22 pages, JHEP3, 4 figures, improved readility of figures, added reference

    Critical equation of state of randomly dilute Ising systems

    Full text link
    We determine the critical equation of state of three-dimensional randomly dilute Ising systems, i.e. of the random-exchange Ising universality class. We first consider the small-magnetization expansion of the Helmholtz free energy in the high-temperature phase. Then, we apply a systematic approximation scheme of the equation of state in the whole critical regime, that is based on polynomial parametric representations matching the small-magnetization of the Helmholtz free energy and satisfying a global stationarity condition. These results allow us to estimate several universal amplitude ratios, such as the ratio A^+/A^- of the specific-heat amplitudes. Our best estimate A^+/A^-=1.6(3) is in good agreement with experimental results on dilute uniaxial antiferromagnets.Comment: 21 pages, 1 figure, refs adde

    Is cosmology consistent?

    Full text link
    We perform a detailed analysis of the latest CMB measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the ``standard'' adiabatic inflationary cosmological model. Out best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favors ``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny changes due to smaller DASI & Maxima calibration errors. Expanded neutrino and tensor discussion, added refs, typos fixed. Combined CMB data, window and covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from [email protected]

    Matrix Models, Geometric Engineering and Elliptic Genera

    Full text link
    We compute the prepotential of N=2 supersymmetric gauge theories in four dimensions obtained by toroidal compactifications of gauge theories from 6 dimensions, as a function of Kahler and complex moduli of T^2. We use three different methods to obtain this: matrix models, geometric engineering and instanton calculus. Matrix model approach involves summing up planar diagrams of an associated gauge theory on T^2. Geometric engineering involves considering F-theory on elliptic threefolds, and using topological vertex to sum up worldsheet instantons. Instanton calculus involves computation of elliptic genera of instanton moduli spaces on R^4. We study the compactifications of N=2* theory in detail and establish equivalence of all these three approaches in this case. As a byproduct we geometrically engineer theories with massive adjoint fields. As one application, we show that the moduli space of mass deformed M5-branes wrapped on T^2 combines the Kahler and complex moduli of T^2 and the mass parameter into the period matrix of a genus 2 curve.Comment: 90 pages, Late

    Adjoint "quarks" on coarse anisotropic lattices: Implications for string breaking in full QCD

    Get PDF
    A detailed study is made of four dimensional SU(2) gauge theory with static adjoint ``quarks'' in the context of string breaking. A tadpole-improved action is used to do simulations on lattices with coarse spatial spacings asa_s, allowing the static potential to be probed at large separations at a dramatically reduced computational cost. Highly anisotropic lattices are used, with fine temporal spacings ata_t, in order to assess the behavior of the time-dependent effective potentials. The lattice spacings are determined from the potentials for quarks in the fundamental representation. Simulations of the Wilson loop in the adjoint representation are done, and the energies of magnetic and electric ``gluelumps'' (adjoint quark-gluon bound states) are calculated, which set the energy scale for string breaking. Correlators of gauge-fixed static quark propagators, without a connecting string of spatial links, are analyzed. Correlation functions of gluelump pairs are also considered; similar correlators have recently been proposed for observing string breaking in full QCD and other models. A thorough discussion of the relevance of Wilson loops over other operators for studies of string breaking is presented, using the simulation results presented here to support a number of new arguments.Comment: 22 pages, 14 figure
    • 

    corecore