# Low energy effective action in $\mathrm{N}=2$ Yang-Mills as an integrated anomaly 

Marc Magro, Ivo Sachs

## To cite this version:

Marc Magro, Ivo Sachs. Low energy effective action in $\mathrm{N}=2$ Yang-Mills as an integrated anomaly. The journal of high energy physics, 2005, pp.006. <10.1088/11266708/2005/08/006>. <ensl-00180196>

## HAL Id: ensl-00180196

https://hal-ens-lyon.archives-ouvertes.fr/ensl-00180196
Submitted on 18 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Low Energy Effective Action in N=2 Yang-Mills as an Integrated Anomaly 

M. Magro ${ }^{1}$ and I. Sachs ${ }^{2}$<br>${ }^{1}$ Laboratoire de Physique, École normale supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France Marc.Magro@ens-lyon.fr<br>${ }^{2}$ Arnold Sommerfeld Center, Department für Physik Ludwig-Maximilians Universität, Theresienstrasse 37, D-80333, München, Germany<br>ivo@theorie.physik.uni-muenchen.de


#### Abstract

Based on chiral ring relations and anomalies, as described by Cachazo, Douglas, Seiberg and Witten, we argue that the holomorphic effective action in $\mathrm{N}=2$ Yang-Mills theory can be understood as an integrated $\mathrm{U}(1)$ anomaly from a purely field theory point of view. In particular, we show that the periods of the Riemann surface arising from the generalized Konishi anomaly can be given a physical interpretation without referring to special geometry. We also discuss consequences for the multi-instanton calculus in $\mathrm{N}=2$ Yang-Mills theory.


## 1 Introduction

Many of the exact results for effective actions in quantum field theory can be understood as integrated anomalous Ward-identities which are protected from higher order corrections. Well known examples are the integration of the chiral (Weyl) anomaly for massless fermions in two dimensions coupled to a gauge (graviational) field or the Veneziano-Yankielowicz superpotential in $\mathcal{N}=1$ Yang-Mills theory [1]. The integration constant in turn reflects the choice of regularization and dynamical scale. In the latter example this constant is fixed by a one-instanton calculation [2, 3]. The purpose of the present paper is to understand the exact results for the low energy effective action of $\mathcal{N}=2$ Yang-Mills theory [4] as an integrated anomaly equation.

That the low energy effective action for $\mathcal{N}=2$ Yang-Mills theory can be obtained by integrating the superconformal anomaly equation [5, 6] has been shown a while ago using a rather intricate series of arguments for gauge group $G=S U(2)$ for pure gauge theory in [7] and including fundamental matter in [8]. For $S U(2)$ without matter this can be understood as follows: The superconformal anomaly equation together with the $S L(2, \mathbf{Z})$ structure of the mass formula implies an ordinary second order differential equation for the first derivative of the prepotential $\mathcal{F}(\mathcal{A}, \Lambda)$ for the massless $\mathcal{N}=2$ vector multiplet $\mathcal{A}$. What is more is that the parameters of this equation are completely fixed by the weak coupling asymptotics. The integration of this equation then determines the prepotential $\mathcal{F}(\mathcal{A}, \Lambda)$ uniquely. For higher rank gauge groups, however, the superconformal anomaly equation of $\mathcal{N}=2$ Yang-Mills is not sufficient simply because it only provides a single equation for a rank $G$ number of low energy fields.

On the other hand, recent work pioneered by Vafa and collaborators [9, 10, 11] using results on geometric transitions in string theory has lead, among other results, to a new string theoretic derivation of the low energy effective action in $\mathcal{N}=2$ Yang-Mills theory. The starting point is a certain class of $U(N), \mathcal{N}=1$ theories obtained from $\mathcal{N}=2$ Yang-Mills by adding a superpotential $W(\Phi)$ for the chiral multiplet that breaks the gauge symmetry $U(N) \rightarrow U\left(N_{1}\right) \times \cdots \times U\left(N_{n}\right)$. This theory can be geometrically engineered via D-branes partially wrapped over certain cycles of a Calabi-Yau geometry. At low energies, the effective theory has a dual formulation where the branes are replaced by fluxes. Furthermore, the dual theory is described in terms of the gluino condensate $S_{i}$ which, together with the massless $U(1)$ vector multiplets $w_{\alpha}^{i}$ in the $U\left(N_{i}\right)$, form an $\mathcal{N}=2$ vector multiplet on the dual Calabi-Yau geometry [9, 10]. The holomorphic part of the effective action for this multiplet is that of an $U(1)^{n}, \mathcal{N}=2$ Yang-Mills theory spontaneously broken to $\mathcal{N}=1$ with a superpotential $W_{\text {eff }}\left(S_{i}\right)$. Furthermore, this effective superpotential for the glueball superfield can be written as an integral of the holomorphic 3 -form over a blown up $S^{3}$ in the Calabi-Yau geometry, or equivalently, a period integral over a dual cycle in a genus $g$-Riemann surface $\Sigma$. In this formulation, the effective couplings of the $U(1)$ vector multiplets appear directly as the period matrix of this Riemann surface. Upon scaling the classical superpotential $W(\Phi)$ to zero one then recovers the $\mathcal{N}=2$ theory at a point in the moduli space given by the minimum of $W(\Phi)$. Although the $S_{i}$ vanish in the $\mathcal{N}=2$ limit the structure of the Riemann surface $\Sigma$ survives and the limit for the coupling $\tau_{i j}$ for the massless $U(1)$ 's is smooth.

In this paper we investigate how this structure can be seen to arise directly in the field theory formulation by integrating a suitable anomalous Ward-identity. This program has in fact been to a large extent completed in [12] where a certain generalization of the Konishi anomaly was used to establish that the aforementioned Riemann surface $\Sigma$ arises directly in the field theory limit. We should note that the prepotential for this theory has been understood a while ago via embedding in string theory [13, [14, 15] and more recently through explicit multi-instanton computations to all orders [16, 17. On the other hand, the observation that the effective action can be understood as an integrated anomaly may put this result in its proper place within the exact results for effective actions and also removes some of the mystery surrounding this model. As we will explain, it also implies that the multi-instanton calculus in this model is, in fact, equivalent to an anomalous Ward-Identity together with a one-instanton calculation and thus should elucidate the structure of the multi-instanton calculus.

The plan of this article is the following. In section 2 we review the chiral ring relations of [12] relevant for our program and discuss the consequences of these relations for instanton calculus in the $\mathcal{N}=2$ theory. In particular we argue in section 2.3 that a specific one-instanton calculation in the chiral ring together with an anomalous Ward-Identity completely determines the $n$-instanton contributions to the various quantities relevant in the $\mathcal{N}=2$ theory.

Then, in section 3 we recall first the constructions of the prepotential $F\left(S_{i}, g_{k}\right)$ and the effective couplings $t_{i j}$ for the massless $U(1)$ vector multiplets in terms of the Hessian of $F\left(S_{i}, g_{k}\right)$ w.r.t. $S_{i}$. The key difference with the effective prepotential $\mathcal{F}(\mathcal{A}, \Lambda)$ for the $\mathcal{N}=2$ theory on the Coulomb branch is that while $\mathcal{F}(\mathcal{A}, \Lambda)$ has an infinite expansion in $\Lambda$ and thus involves a priori an infinite number of instanton contributions, $F\left(S_{i}, g_{k}\right)$ is a homogenous function of the "glueball" fields $S_{i}$ and the couplings $g_{k}$ of the superpotential. In particular, the role of the dynamical scale $\Lambda$ is reduced to setting the scale for the microscopic gauge coupling which can be evaluated in perturbation theory and a one-instanton calculation.

What remains to be shown is that the Hessian of $F\left(S_{i}, g_{k}\right)$ is given by the period matrix of the Riemann surface $\Sigma$. We should note that while in the string theory description via geometric transition (9, 10) this is an immediate consequence of special geometry, the proof in the field theory description is more intricate. In sections $3.2-3.4$ we will show explicitly that this relation holds in the field theory description. This is the main technical result of this
paper. For $U(N)$ broken to $U(1)^{N}$ and in the limit of vanishing superpotential, it allows us finally to express the low energy effective couplings for the massless $U(1)$ vector multiplets in terms of the $\mathcal{N}=2, U(N)$ Casimirs $u_{k}$ and in this way we derive the low energy effective action [4] for $\mathcal{N}=2$ Yang-Mills theory. This is done in section 3.5. Hence, the low energy effective action has been shown to follow from integrating an anomalous Ward-identity.

## 2 Chiral Ring Relations

Our starting point is $\mathcal{N}=2 U(N)$ Yang-Mills broken to an $\mathcal{N}=1, U(1)^{N}$ theory. In $\mathcal{N}=1$ superspace ${ }^{1}$ this theory is described by a chiral multiplet $\Phi$ and a vector multiplet $W_{\alpha}$. We add to the corresponding action a classical superpotential $\operatorname{Tr} W(\Phi)$ for the chiral multiplet with

$$
\begin{equation*}
W(\Phi)=\sum_{k=0}^{n} \frac{g_{k}}{k+1} \Phi^{k+1} \tag{1}
\end{equation*}
$$

As explained in [12] an important role in the field theory derivation of the glueball potential is played by the ring of $\mathcal{N}=1$ gauge-invariant chiral operators. Since we will rely on these properties as well we present in this section a short summary of those that are relevant for us and discuss some consequences.

### 2.1 Definition

The chiral ring is made up of gauge invariant operators $\mathcal{O}$ which are chiral, ie. $\left[Q_{\dot{\alpha}}, \mathcal{O}\right\}=0$. It follows immediately from this property that correlation functions of operators in the chiral ring in a supersymmetric vacuum $\left(Q_{\alpha}|0\rangle=0\right)$ are $x$-independent, ie.

$$
\begin{equation*}
-2 i \frac{\partial}{\partial x_{1}^{\alpha \dot{\alpha}}}\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right)\right\rangle=\left\langle\left[Q_{\dot{\alpha}},\left[Q_{\alpha}, \mathcal{O}_{1}\left(x_{1}\right)\right\}\right\} \mathcal{O}_{2}\left(x_{2}\right)\right\rangle=0 \tag{2}
\end{equation*}
$$

An important consequence of (21) is the factorization property $\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle=$ $\left\langle\mathcal{O}_{1}\right\rangle\left\langle\mathcal{O}_{2}\right\rangle$. Another property of chiral operators is that in a supersymmetric vacuum the expectation values of $\mathcal{O}$ and $\mathcal{O}+Q_{\dot{\alpha}} X^{\dot{\alpha}}$ are identical provided

[^0]$X^{\dot{\alpha}}$ is some gauge invariant operator. Thus, we consider the chiral ring as being generated by the equivalence classes
\[

$$
\begin{equation*}
\mathcal{O} \simeq \mathcal{O}+Q_{\dot{\alpha}} X^{\dot{\alpha}} \tag{3}
\end{equation*}
$$

\]

One can represent (not necessarily gauge invariant) chiral operators as the lowest components of chiral superfields $\Psi$ (since $\left.\left.\left[Q_{\dot{\alpha}}, \Psi\right\}\right|_{\theta=0}=\left.\left[D_{\dot{\alpha}}, \Psi\right\}\right|_{\theta=0}\right)$. Then, using

$$
\begin{equation*}
\bar{\nabla}^{2} \nabla_{\alpha} \Psi=\left[W_{\alpha}, \Psi\right\} \tag{4}
\end{equation*}
$$

where $\nabla_{\alpha}$ is the super- and gauge covariant derivative, one finds that $W_{\alpha}$ (anti) commutes with $\Psi$ in the chiral ring. Taking this into account one sees that the $\mathcal{N}=1$ chiral ring is generated by the elements

$$
\begin{equation*}
\left\{\operatorname{Tr}\left(\Phi^{k}\right), \operatorname{Tr}\left(\Phi^{k} W_{\alpha}\right), \operatorname{Tr}\left(\Phi^{k} W_{\alpha} W^{\alpha}\right)\right\} \tag{5}
\end{equation*}
$$

In the rest of this paper certain relations between elements of the chiral ring will play a crucial role. In order to describe these relations for the complete set of elements simultaneously it is useful to introduce a generating function for all elements of the chiral ring. Such a generating function is given by

$$
\begin{equation*}
\mathcal{R}(z, \psi) \equiv \operatorname{Tr} \hat{\mathcal{R}}(z, \psi)=\frac{1}{2} \operatorname{Tr}\left(\left(\frac{1}{4 \pi} W^{\alpha}-\psi^{\alpha}\right)^{2} \frac{1}{z-\Phi}\right) \tag{6}
\end{equation*}
$$

where $z \in \mathbf{C}$ and $\psi_{\alpha}$ is a Grassman-valued parameter. The various elements of the chiral ring are then given by the coefficients in the expansion of $\langle\mathcal{R}(z, \psi)\rangle$ in powers of $\psi_{\alpha}$ and $\frac{1}{z}$.

### 2.2 Classical and Quantum Relations

As explained in the introduction the basic idea we will employ is to integrate an anomalous Ward identity in order to obtain the effective action for the massless degrees of freedom in the Coulomb branch of $\mathcal{N}=2$ Yang-Mills theory. Concretely this anomaly is manifested as a quantum correction to a classical relation in the chiral ring. The relation we consider is simply a consequence of the equation of motion, $\bar{\nabla}^{2} \bar{\Phi}=\partial_{\Phi} W(\Phi)$, where $W(\Phi)$ is the classical superpotential. Since classically $\bar{\nabla}_{\dot{\alpha}}$ commutes with any chiral field we can multiply this equation by $\hat{\mathcal{R}}$ to get

$$
\begin{equation*}
\bar{D}^{2} \operatorname{Tr}(\hat{\mathcal{R}}(z, \psi) \bar{\Phi})=\operatorname{Tr}\left(\hat{\mathcal{R}}(z, \psi) \partial_{\Phi} W(\Phi)\right) . \tag{7}
\end{equation*}
$$

Upon quantization, normal ordering effects have to be taken into account which lead to an anomaly in the above relation [19, 20]. This anomaly can be determined, for instance, using Pauli-Villars regularisation (e.g. [21). In perturbation theory this one loop calculation is exact. It was shown in [22] that for the types of superpotentials considered here there are no nonperturbative corrections to the anomaly. The anomalous relation is then given by [12]

$$
\begin{equation*}
\bar{D}^{2} \operatorname{Tr}(\hat{\mathcal{R}}(z, \psi) \bar{\Phi})=\operatorname{Tr}\left(\hat{\mathcal{R}}(z, \psi) \partial_{\Phi} W(\Phi)\right)+\frac{1}{32 \pi^{2}} \sum_{k l}\left[W_{\alpha},\left[W^{\alpha}, \frac{\partial \hat{\mathcal{R}}}{\partial \Phi_{k l}}\right]\right]_{l k} \tag{8}
\end{equation*}
$$

where $\Phi_{k l}$ are the entries of the matrix $\Phi$. Note that the above equation still holds if we replace $W_{\alpha}$ by $W_{\alpha}-4 \pi \psi_{\alpha}$ since $\psi_{\alpha}$ (anti) commutes with everything. Still following [12] and using the identity

$$
\begin{equation*}
\sum_{k l}\left[\chi_{1},\left[\chi_{2}, \frac{\partial}{\partial \Phi_{k l}} \frac{\chi_{1} \chi_{2}}{z-\Phi}\right]\right]_{l k}=\operatorname{Tr}\left(\frac{\chi_{1} \chi_{2}}{z-\Phi}\right) \operatorname{Tr}\left(\frac{\chi_{1} \chi_{2}}{z-\Phi}\right) \tag{9}
\end{equation*}
$$

valid in the chiral ring for anti commuting operators $\chi_{1}$ and $\chi_{2}$ and taking expectation values, we have

$$
\begin{equation*}
\langle\mathcal{R}(z, \psi) \mathcal{R}(z, \psi)\rangle=\operatorname{Tr}\left\langle\hat{\mathcal{R}}(z, \psi) \partial_{\Phi} W(\Phi)\right\rangle \tag{10}
\end{equation*}
$$

Finally, recalling the factorization properties of the chiral ring this leads to

$$
\begin{equation*}
\langle\mathcal{R}(z, \psi)\rangle^{2}=\partial_{z} W(z)\langle\mathcal{R}(z, \psi)\rangle+\frac{1}{4} f(z, \psi) \tag{11}
\end{equation*}
$$

where $f(z, \psi)=\sum_{i=0}^{n-1} f_{i}(\psi) z^{i}$ is a polynomial of order $n-1$ in $z$ defined by

$$
\begin{equation*}
f(z, \psi)=-2\left\langle\operatorname{Tr}\left(\frac{\left(W^{\prime}(z)-W^{\prime}(\Phi)\right)\left(\frac{W^{\alpha}}{4 \pi}-\psi^{\alpha}\right)^{2}}{z-\Phi}\right)\right\rangle \tag{12}
\end{equation*}
$$

The coefficients $f_{i}(\psi)$ are thus given by

$$
\begin{equation*}
f_{i}=-\frac{1}{2 \pi} \sum_{q=i+1}^{n} g_{q} t_{q-i-1} \tag{13}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
t_{k}(\psi)=\frac{1}{4 \pi}\left\langle\operatorname{Tr}\left(\phi^{k}\left(W^{\alpha}-4 \pi \psi^{\alpha}\right)^{2}\right)\right\rangle \tag{14}
\end{equation*}
$$

Eqn. (11) is then solved for $\langle\mathcal{R}(z, \psi)\rangle$ as

$$
\begin{equation*}
2\langle\mathcal{R}(z, \psi)\rangle=W^{\prime}(z)-\sqrt{W^{\prime}(z)^{2}+f(z, \psi)} \tag{15}
\end{equation*}
$$

In the above expectation values it is understood that the high energy degrees of freedom have been integrated out while the low energy degrees of freedom play the role of background fields which are assumed to take values compatible with unbroken supersymmetry, so that the chiral ring properties are realized. It has been shown in [23] that each solution of the chiral ring relations corresponds to a supersymmetric vacuum of the gauge theory. In what follows we consider the case where the $U(N)$ gauge symmetry is broken down to $U(1)^{N}$. In analogy with the case where the breaking is to a product of $U\left(N_{i}\right)$ groups, we take the low energy fields to be the massless $U(1)_{i}$ vector multiplets $w_{i}^{\alpha}$ together with the glueball superfields ${ }^{2} S_{i}$ with the condensate of the massless gluinos as their lowest components. In particular, the chiral multiplet which acquires a mass due to the classical superpotential $W(\Phi)$ is integrated out. The light degrees of freedom are then conveniently combined with the help of the auxiliary variable $\psi_{\alpha}$ as

$$
\begin{align*}
\mathcal{S}_{i} & =S_{i}-w_{i} \psi+\frac{1}{2} \psi^{2} N_{i}  \tag{16}\\
& =\frac{1}{2 \pi i} \oint_{A_{i}}\langle\mathcal{R}(z, \psi)\rangle
\end{align*}
$$

where the contour $A_{i}$ is around the cut extending from the $i$-th minimum of the function $W(z)$ which are assumed to be non-degenerate. The details concerning the projection onto $S_{i}$ in terms of the contour integrals can be found in [12].

It follows from (16) that the expectation value $\langle\mathcal{R}(z, \psi)\rangle$ depends on $\psi_{\alpha}$ only implicitly through the $\mathcal{S}_{i}$. Furthermore, defining

$$
\begin{equation*}
\mathcal{Y}(z, \psi)=\sqrt{W^{\prime}(z)^{2}+f(z, \psi)} \tag{17}
\end{equation*}
$$

and using eq.(15) gives

$$
\begin{equation*}
\mathcal{S}_{i}=-\frac{1}{4 \pi i} \oint_{A_{i}} \mathcal{Y} \tag{18}
\end{equation*}
$$

[^1]Note also that $\mathcal{S}_{i}$ can be considered as a function of the variables $g_{k}$ and $f_{j}(\psi)$ and conversely $f(z, \psi)=f\left(z, \mathcal{S}_{j}(\psi), g_{k}\right)$.

The result (15), obtained in [12] shows the appearance of a genus $g=$ $N-1$ Riemann surface $\Sigma$ defined by eq.(17) (evaluated at $\psi_{\alpha}=0$ ) as a consequence of the anomalous relation (8) in the chiral ring. The period matrix $t_{i j}\left(S_{i}, g_{k}\right)$ of $\Sigma$ will be identified with the low energy effective couplings $\tau_{i j}\left(u_{k}\right)$ of the massless fields in the Coulomb branch of the $\mathcal{N}=2$ theory. In order to establish this result we first need to understand how $t_{i j}\left(S_{i}, g_{k}\right)$ enters in the effective action for the massless vector multiplets $w_{i \alpha}$. This is done in section 3.

### 2.3 Chiral Ring Relations and Instanton Calculus

As explained above the expectation values in Eqn. (11) stand for integrating out the high energy degrees of freedom in the presence of the "external" fields $S_{i}$ and $w_{i \alpha}$. However, another interpretation is possible in which all degrees of freedom are integrated out. In this case the coefficients $f_{i}$ defined by eq.(13) are functions of $g_{k}$ only. If the superpotential is such that the gauge symmetry is broken to $U(1)^{N}$, then there is no strong infrared dynamics such that the coefficients $f_{i}$ can be evaluated by treating the superpotential perturbatively in the $\mathcal{N}=2$ theory. In addition $f_{i}$, or rather $t_{k}=\frac{1}{4 \pi} \operatorname{Tr}\left\langle\phi^{k} W^{2}\right\rangle$ (see Eqn. (14)) is saturated by classical and instanton contributions. This is because $t_{k}$ is annihilated by $\bar{Q}_{\dot{\alpha}}$ implying that the path integral localizes on just these configurations. Concretely we have for the $s$-instanton contribution

$$
\begin{equation*}
t_{k}=\sum_{r_{0}, \cdots, r_{N}} a_{s, r_{0}, r_{1}, \cdots, r_{N}} \Lambda^{2 N s} g_{0}^{r_{0}} \cdots g_{N}^{r_{N}}, \tag{19}
\end{equation*}
$$

with $r_{l} \geq 0$ and subject to the constraints $\sum_{l} r_{l}=1$ and $2 N s-\sum_{l} r_{l}(l+$ $1)=k$. These selection rules can be understood from symmetries [12] or alternatively by looking at the details of the $s$-instanton calculation: Since we are expanding about the theory with vanishing superpotential $\left(g_{k}=0\right)$ only non-negative powers of $g_{k}$ appear in the expansion ${ }^{3}$. In order to get a non-vanishing contribution from an instanton with topological charge $s$ we need to saturate the $4 N s$ fermionic zero modes: Two gluino zero modes appear in $\operatorname{Tr}\left(\phi^{k} \lambda^{2}\right)$. Further zero modes appear by expanding in terms of

[^2]the Yukawa coulings $\operatorname{Tr}\left(\lambda \phi^{\dagger} \psi\right)$. It is then not hard to see that in order to produce $2 N s$ gluino $\lambda$ and "quark" $\psi$ zero modes we need to have exactly one contribution $g_{l} \operatorname{Tr}\left(\phi^{l-1} \psi^{2}\right)$ from the potential $\int d^{2} \theta W(\Phi)$. This explains the first selection rule given above. Furthermore, the total number of scalars contained in $t_{k}$ and $g_{l} \operatorname{Tr}\left(\phi^{l-1} \psi^{2}\right)$ must match the $2 N s-2$ scalars coming from the expansion in the Yukawa couplings. This then leads to the second selection rule stated above which now has the interpretation of a tree level amplitude in the presence of $4 N s$ fermionic zero modes. A consequence of these selection rules is that the $t_{k}$ 's vanish for $0 \leq k<N-1$ and $t_{N-1}$ is determined by a 1 -instanton contribution.

For $k \geq N$ the connected part of $t_{k}=\frac{1}{4 \pi}\left\langle\operatorname{Tr}\left(W^{2} \Phi^{k}\right)\right\rangle$ is still subject to the selection rules above and similarly for the connected part of $u_{k}=\left\langle\operatorname{Tr} \Phi^{k}\right\rangle$, that is

$$
\begin{equation*}
\left\langle\operatorname{Tr} \Phi^{k}\right\rangle_{c}=\sum_{s} a_{s} \Lambda^{2 N s} . \tag{20}
\end{equation*}
$$

Here the connected part of the expectation value is the part that cannot be written as a product of expectation values with less than $k$ fields. In particular, for $k<2 N, u_{k}$ is fully determined by its classical expression in terms of the $g_{k}$ 's.

Combining the selection rules for (19) and (20) with the chiral ring relation (15) one then concludes that the expansions of $t_{k}$ and $u_{k}$ in the dynamical scale $\Lambda$ are completely determined by a single 1-instanton calculation and the classical expressions for the $u_{k}, k \leq N$. Indeed, expanding both sides of eq.(11) in $1 / z$ we obtain the recurrence relation

$$
\begin{equation*}
\sum_{p, q=0}^{\infty} \mathcal{R}_{p} \mathcal{R}_{q} z^{-p-q-2}=\sum_{q=0}^{\infty} \sum_{p=0}^{N} g_{p} \mathcal{R}_{q} z^{-p-q-1} \tag{21}
\end{equation*}
$$

where $\langle\mathcal{R}(z, \psi)\rangle=\sum z^{-q} \mathcal{R}_{q}$. The recursion relation is then obtained by comparing equal powers in $z$ (see also [23] for a related discussion).

An important application of this discussion is that, of the coefficients $f_{i}$, only $f_{0}$ is non-vanishing [12] and is then equal to $d_{0} g_{N}^{2} \Lambda^{2 N}$. The factor $d_{0}$ can in principle be determined by evaluating $t_{N-1}$ in the explicit one-instanton computation. Instead we will determine $d_{0}$ below by comparison with the 1-instanton contribution to the superconformal anomaly in the $\mathcal{N}=2$ theory. This, with the help of (15), fixes $\langle\mathcal{R}(z, \psi)\rangle$ and, in particular, $S_{i}$ completely in terms of the $g_{k}$ and the one-instanton coefficient $f_{0}$. This suggests that the chiral ring relations, or equivalently the Konishi anomaly imply a relation
between instanton contributions of different topological charges (see [27, 28, [29] for other approaches to instanton recursion relations).

## 3 Effective Action and Low Energy Couplings

In order to determine the couplings of the massless $\mathrm{U}(1)$ vector multiplets $w_{\alpha}^{i}$, we will need to determine the holomorphic part of the effective action for these fields. In the $\mathcal{N}=2$ theory this action is usually expressed in terms of a prepotential $\mathcal{F}(\mathcal{A}, \Lambda)$ for the $\mathcal{N}=2$ vector multiplet $\mathcal{A}$. However, as explained in the introduction this prepotential involves an infinite number of instanton contributions. The key observation [11] allowing to circumvent this problem is that the low energy effective couplings can equally be obtained from an effective superpotential $W_{\text {eff }}\left(g_{k}, S_{i}, w_{i \alpha}\right)$ which in contrast to $\mathcal{F}(\mathcal{A}, \Lambda)$ does not receive higher instantons contributions.

### 3.1 Effective Action

In analogy with the usual effective action in field theory the holomorphic part of the effective action is given by the sum over 1PI graphs with $S_{i}$ and $w_{i \alpha}$ insertions. In fact we can say more. A "non-renormalisation theorem" given in [12] shows that in perturbation theory the only contributions, compatible with the expected symmetries of the effective action come from planar graphs. Furthermore these planar graphs have either exactly one $w_{i \alpha}$ insertion at two of the index loops and one $S_{i}$ insertion at each of the remaining index loops or one $S_{i}$ insertion in all but one index loop. The index loop without $S_{i}$ insertion being proportional to $N_{i}$, where

$$
\begin{equation*}
N_{i}=\frac{1}{2 \pi i} \oint_{A_{i}}\left\langle\operatorname{Tr} \frac{1}{z-\Phi}\right\rangle \tag{22}
\end{equation*}
$$

counts the degeneracy of the vacuum corresponding to the $i-t h$ minimum of the potential. This observation then implies that the holomorphic part of the effective action for the low energy fields can be expressed in terms of a single function $F\left(g_{k}, S_{i}\right)$. Indeed let $F\left(g_{k}, S_{i}\right)$ be the sum over all 1PI graphs with exactely one $S_{i}$ insertion at each of the index loops. Then, since the effective potential is obtained by either replacing one $S_{i}$ by $N_{i}$ or two $S_{i}$
insertions by $w_{i \alpha}$ 's, we have

$$
\begin{equation*}
W_{e f f}\left(g_{k}, S_{i}, w_{i \alpha}\right)=\sum_{i} N_{i} \frac{\partial F\left(g_{k}, S_{i}\right)}{\partial S_{i}}+\sum_{i j} \frac{\partial^{2} F\left(g_{k}, S_{i}\right)}{\partial S_{i} \partial S_{j}} w_{i \alpha} w_{j}^{\alpha} \tag{23}
\end{equation*}
$$

This latter relation can be written equivalently as

$$
\begin{equation*}
W_{e f f}\left(g_{k}, S_{i}, w_{i \alpha}\right)=\left.\mathcal{F}\left(g_{k}, \mathcal{S}_{i}\right)\right|_{\psi^{2}} \tag{24}
\end{equation*}
$$

where $\mathcal{F}\left(g_{k}, \mathcal{S}_{i}\right)$ is obtained from $F\left(g_{k}, S_{i}\right)$ simply by the substitution $S_{i} \rightarrow$ $\mathcal{S}_{i}$. In order to evaluate the coupling for the massless $U(1)$ fields $w_{i \alpha}$ we then set the $S_{i}$ "on shell". There are two equivalent ways of implementing this. In the last section we have seen that on shell the $f_{i}$ 's are expressed in terms of $g_{k}$. On the other hand, from the point of view of $W_{e f f}\left(g_{k}, S_{i}, w_{i \alpha}\right)$ this means that

$$
\begin{equation*}
\frac{\partial W_{e f f}\left(g_{k}, S_{i}, w_{i \alpha}=0\right)}{\partial S_{i}}=0 \tag{25}
\end{equation*}
$$

so that the coupling matrix is

$$
\begin{equation*}
t_{i j}\left(S_{i}, g_{k}\right)=\frac{\partial^{2} F}{\partial S_{i} \partial S_{j}} \tag{26}
\end{equation*}
$$

However, to compare (26) with the couplings for the massless $U(1)$ vector multiplets in $S U(N) \mathcal{N}=2$ Yang-Mills we need to change variables from the $w_{\alpha i}$ to usual Cartan-Weyl basis for $S U(N)$. We will call these variables $\alpha_{i}$, $i=1, \cdots, N-1$. They are defined by

$$
\begin{equation*}
\alpha_{i}=S_{i}-\frac{1}{N} \sum_{j=1}^{N} S_{j} \quad \text { for } \quad i=1, \cdots, N-1 \tag{27}
\end{equation*}
$$

while $\alpha_{+}=\frac{1}{N} \sum_{i=1}^{N} S_{i}$. In particular, $\alpha_{+}$vanishes on shell. The couplings for the $\alpha_{i}$ are then given by $\tau_{i j}\left(g_{k}, S_{i}\right)=\frac{\partial^{2} F}{\partial \alpha_{i} \partial \alpha_{j}}$.

In principle $F\left(g_{k}, S_{i}\right)$ can now be computed directly order by order in perturbation theory ${ }^{4}$ [30] (or in an associated matrix model 31]). However, for the couplings, we only need its second derivative $F\left(g_{k}, S_{i}\right)$ with respect to $S_{i}$. We will now show explicitely that the Hessian of $F$ can be expressed in terms of the period matrix of the Riemann surface described by (17). This is the main technical result of the present paper.

[^3]
### 3.2 Effective Action and Chiral Ring

First we recall a result in 12 relating the derivative of $F\left(g_{k}, S_{i}\right)$ with respect to $g_{k}$ to the expectation value of $\mathcal{R}(z, \psi)$ introduced in section 2. To start with we have from eq.(1)

$$
\begin{equation*}
\frac{\partial W_{e f f}\left(g_{k}, S_{i}, w_{i \alpha}\right)}{\partial g_{k}}=\frac{1}{(k+1)}\left\langle\operatorname{Tr}\left(\Phi^{k+1}\right)\right\rangle_{\left\{S_{i}, w_{j \alpha}\right\}} . \tag{28}
\end{equation*}
$$

On the other hand $W_{\text {eff }}\left(g_{k}, S_{i}, w_{i \alpha}\right)$ is expressed in terms of $F\left(g_{k}, S_{i}\right)$ via eq.(24). The claim is that this implies

$$
\begin{equation*}
\frac{\partial \mathcal{F}\left(g_{k}, \mathcal{S}_{i}\right)}{\partial g_{k}}=-\frac{1}{2(k+1)}\left\langle\operatorname{Tr}\left(\Phi^{k+1}\left(\frac{W_{\alpha}}{4 \pi}-\psi_{\alpha}\right)\left(\frac{W^{\alpha}}{4 \pi}-\psi^{\alpha}\right)\right)\right\rangle_{\left\{S_{i}, w_{j \alpha}\right\}} \tag{29}
\end{equation*}
$$

The identity (29) follows from the observation that the right hand side depends on the background fields $\left\{S_{i}, w_{j \alpha}\right\}$ only in the combination $\mathcal{S}_{i}$. On the other hand (24) and (28) imply that the $\psi^{2}$ component of both sides of the equation (29) agree. Finally, by construction both sides vanish at $\mathcal{S}_{i}=0$. Consequently the two functions are the same.

We will now show that $\frac{\partial F\left(g_{k}, S_{i}\right)}{\partial \alpha_{i}}$ is expressed in terms of the (dual) $B_{i^{-}}$ periods of the Riemann surface $\Sigma$ defined by eq. (17). In the string theory description of this model [10] this property follows directly from the special geometry of CY spaces. In field theory we are not aware of a previous derivation of this property (see also comment at the end of section 4 in [12]). The strategy we use is to first compute $\frac{\partial^{2} F\left(g_{k}, S_{i}\right)}{\partial S_{i} \partial g_{k}}$ and then to show that the result obtained can be integrated to obtain $\frac{\partial F\left(g_{k}, S_{i}\right)}{\partial S_{i}}$ up to an integration "constant" independent of $g_{k}$. We start with eq. (29) which gives for $\psi_{\alpha}=0$

$$
\begin{align*}
\frac{\partial F\left(g_{k}, S_{i}\right)}{\partial g_{k}} & =-\frac{1}{32 \pi^{2}(k+1)}\left\langle\operatorname{Tr}\left(\Phi^{k+1} W_{\alpha} W^{\alpha}\right)\right\rangle_{S_{i}} \\
& =-\frac{1}{2} \frac{1}{(k+1)} \operatorname{Res}_{\infty}\left[z^{k+1} y(z)\right] \tag{30}
\end{align*}
$$

where we have used eq.(6), (15) and $y(z)=\left.\mathcal{Y}(z)\right|_{\psi_{\alpha}=0}=\sqrt{W^{\prime}(z)^{2}+f(z)}$. The next step is then to characterize completely $y(z)$. As it is a mereomorphic 1 -form with a singular point of order $N$ at infinity, it can be written as 32]

$$
\begin{equation*}
y=\sum_{k=0}^{N} \beta_{k} d \Omega_{k}+\beta_{+} d \Omega_{+}+\sum_{i=1}^{N-1} \gamma_{i} \xi_{i} \tag{31}
\end{equation*}
$$

with the following definitions: $\xi_{i}$ are canonically normalized holomorphic 1forms such that $\oint_{A_{i}} \xi_{j}=\delta_{i j}$. $d \Omega_{k}$ behave at infinity like $d \Omega_{k}=z^{k}+O\left(z^{-2}\right)$ and satisfy ${ }^{5} \oint_{A_{i}} d \Omega_{k}=0$ for all $i$. We have similarly $d \Omega_{+}=z^{-1}+O\left(z^{-2}\right)$ and $\oint_{A_{i}} d \Omega_{+}=0$ for $i=1, \cdots, N-1$.

Let us now determine the coefficients $\beta_{k}, \beta_{+}$and $\gamma_{i}$. The coefficient $\gamma_{i}$ is obtained by integrating around the contour $A_{i}$. It follows from (18), the previous definitions and from (27) that $\gamma_{i}=-4 \pi i\left(\alpha_{i}+\alpha_{+}\right)$. The coefficient $\beta_{k}$ is obtained by considering the behavior of $y$ at infinity. More precisely, as

$$
\begin{equation*}
y(z)=W^{\prime}(z) \sqrt{1+\frac{f(z)}{W^{\prime 2}(z)}}=W^{\prime}(z)\left(1+O\left(z^{-N-1}\right)\right) \tag{32}
\end{equation*}
$$

we have $\operatorname{Res}_{\infty}\left(z^{-k-1} y\right)=g_{k}$ for $0 \leq k \leq N$ which leads to $\beta_{k}=g_{k}$. Finally, we have $\beta_{+}=-2 N \alpha_{+}$as

$$
\begin{equation*}
\beta_{+}=\frac{1}{2 \pi i} \oint_{\infty} y=\frac{1}{2 \pi i} \sum_{i=1}^{N} \oint_{A_{i}} y=-2 \sum_{i=1}^{N} S_{i}=-2 N \alpha_{+} . \tag{33}
\end{equation*}
$$

Thus we have shown that

$$
\begin{equation*}
y=\sum_{k=0}^{N} g_{k} d \Omega_{k}-4 \pi i \sum_{i=1}^{N-1} \alpha_{i} \xi_{i}-\alpha_{+}\left(2 N d \Omega_{+}+4 \pi i \sum_{i=1}^{N-1} \xi_{i}\right) . \tag{34}
\end{equation*}
$$

We prove then in appendix $A$ that $y$ is homogenous of degree one in $\alpha_{i}, \alpha_{+}$ (or $S_{i}$ ) and $g_{k}$. In particular, we have

$$
\begin{equation*}
\frac{\partial y}{\partial g_{k}}=d \Omega_{k} \quad \text { and } \quad \frac{\partial y}{\partial \alpha_{i}}=-4 \pi i \xi_{i} . \tag{35}
\end{equation*}
$$

After these preparations we consider $\frac{\partial^{2} F}{\partial g_{k} \partial \alpha_{i}}$. We get then from equations (30) and (35)

$$
\begin{align*}
\frac{\partial^{2} F}{\partial g_{k} \partial \alpha_{i}} & =\frac{\partial^{2} F}{\partial \alpha_{i} \partial g_{k}}=-\frac{1}{2} \frac{1}{k+1} \operatorname{Res}_{\infty}\left(z^{k+1} \frac{\partial y}{\partial \alpha_{i}}\right) \\
& =2 \pi i \frac{1}{k+1} \operatorname{Res}_{\infty}\left(z^{k+1} \xi_{i}\right) \tag{36}
\end{align*}
$$

In the next subsection we integrate this relation.

[^4]
### 3.3 Identification of the $B_{i}$ periods

We will now show that the expression (36) can be written as a derivative with respect to $g_{k}$ of an integral over the cycle $B_{i}$ dual to $A_{i}$. For this, we use the Riemann bilinear relations associated with one form of first kind (i.e. holomorphic), $\xi_{i}$, and the other of second kind (i.e. meromorphic with no residues), $d \Omega_{k}$ :

$$
\begin{equation*}
\sum_{j=1}^{N-1}\left[\oint_{A_{j}} d \Omega_{k} \oint_{B_{j}} \xi_{i}-\oint_{A_{j}} \xi_{i} \oint_{B_{j}} d \Omega_{k}\right]=2 \pi i\left[\operatorname{Res}_{P}\left(\Omega_{k} \xi_{i}\right)+\operatorname{Res}_{\tilde{P}}\left(\Omega_{k} \xi_{i}\right)\right] \tag{37}
\end{equation*}
$$

Let us recall briefly that such relations are obtained by computing in two different ways one particular integral [33], $\int_{\partial \Sigma} \Omega_{k} \xi_{i}$, where the Riemann surface $\Sigma$ is thought here as a polygon with some identifications (see figure (1). Then, the l.h.s. corresponds to the computation of this integral on the contour shown on figure $\mathbb{1}$ while the r.h.s. of eq.(37) is simply obtained by use of Cauchy's formula where $P$ and $\tilde{P}$ have coordinates $z(P)=z(\tilde{P})=\infty$ with $y(P)=-y(\tilde{P})$.


Figure 1:

However, for the l.h.s. we use the definitions of $\xi_{i}$ and $d \Omega_{k}$, which give respectively $\oint_{A_{j}} \xi_{i}=\delta_{i j}$ and $\oint_{A_{j}} d \Omega_{k}=0$. For the r.h.s., we have $\operatorname{Res}_{P}\left(\Omega_{k} \xi_{i}\right)=$ $\operatorname{Res}_{\tilde{P}}\left(\Omega_{k} \xi_{i}\right)$ because both $d \Omega_{k}=\frac{\partial y}{\partial g_{k}}$ and $\xi_{i}$ change sign when going from $P$ to $\tilde{P}$. Furthermore these residues are equal to $\frac{1}{k+1} \operatorname{Res}_{\infty}\left(z^{k+1} \xi_{i}\right)$ as $d \Omega_{k}=$ $z^{k}+O\left(z^{-2}\right)$ and $\xi_{i}=O\left(z^{-2}\right)$. Using the result (351) we finally get

$$
\begin{equation*}
-\frac{1}{2} \oint_{B_{i}} \frac{\partial y}{\partial g_{k}}=2 \pi i \frac{1}{k+1} \operatorname{Res}_{\infty}\left(z^{k+1} \xi_{i}\right) \tag{38}
\end{equation*}
$$

This enables us to write eqn. (36) as $\frac{\partial^{2} F}{\partial g_{k} \partial \alpha_{i}}=-\frac{1}{2} \oint_{B_{i}} \frac{\partial y}{\partial g_{k}}$ which can be inte-
grated w.r.t. $g_{k}$ to end up with

$$
\begin{equation*}
\frac{\partial F}{\partial \alpha_{i}}=-\frac{1}{2} \oint_{B_{i}} y+H_{i}\left(\alpha_{+}, \alpha_{j}\right) \tag{39}
\end{equation*}
$$

where $H_{i}\left(\alpha_{+}, \alpha_{j}\right)$ is an integration constant. The purpose of the next subsection is to fix this function via the superconformal anomaly.

### 3.4 Determination of the Integration Constant

In order to determine $H_{i}\left(\alpha_{+}, \alpha_{j}\right)$ we need to know the $g_{k}$-independent part of $F\left(g_{k}, \alpha_{i}, \alpha_{+}\right)$. This can be done with the help of the superconformal anomaly which can be computed in the microscopic $U(N)$ theory using standard methods such as Pauli-Villars regularization. This leads to

$$
\begin{equation*}
D^{\dot{\alpha}} T_{\alpha \dot{\alpha}}=-\left(3 N_{c}-N_{a} N_{c}\right) D_{\alpha} \hat{S}, \tag{40}
\end{equation*}
$$

where $T_{\alpha \dot{\alpha}}$ is the $\mathcal{N}=1$ supercurrent and $\hat{S}$ is the $S U(N)$ glueball field. More precisely, we have

$$
\begin{equation*}
S_{i}=\hat{S}_{i}-\frac{1}{2 N} w_{\alpha i} w^{\alpha i} \tag{41}
\end{equation*}
$$

This anomaly ought to be reproduced by the low energy effective potential $W_{\text {eff }}\left(g_{k}, \hat{S}_{i}\right)$. The charges of $\hat{S}_{i}, g_{k}$ and $\theta_{\alpha}$ are $3,2-k$, and $-\frac{1}{2}$ respectively. We thus conclude that $W_{e f f}\left(g_{k}, \hat{S}_{i}\right)$ satisfies the equation

$$
\begin{equation*}
\left(\sum_{k}(2-k) g_{k} \frac{\partial}{\partial g_{k}}+3 \sum_{i} \hat{S}_{i} \frac{\partial}{\partial \hat{S}_{i}}-3\right) W_{e f f}=-2 N \sum_{i} \hat{S}_{i} \tag{42}
\end{equation*}
$$

where we have assumed $N_{a}=1$ and $N \equiv N_{c}$ in the last equality ${ }^{6}$. In order to see how this anomaly is reproduced in the low energy effective theory we need to relate the dynamical scale $\Lambda_{i}$ of the low energy theory to the scale $\Lambda$

[^5]of the $U(N)$ theory [9. We have
\[

$$
\begin{align*}
\Lambda_{i}^{3 N_{i}} & =\Lambda^{2 N} m_{\Phi_{i}}^{N_{i}} \prod_{j \neq i} m_{W_{i j}}^{-2 N_{j}} \\
& =\Lambda^{2 N} g_{N}^{N_{i}} \prod_{j \neq i}\left(z_{i}-z_{j}\right)^{N_{i}-2 N_{j}} \tag{44}
\end{align*}
$$
\]

where $z_{i}$ are the roots of $W^{\prime}(z)$. Taking into account the dimensions of $g_{k}$ and $z_{i}$ it is then not hard to see that the anomaly (42) is reproduced by

$$
\begin{equation*}
W_{e f f}\left(g_{k}, \hat{S}_{i}\right)=\sum_{i=1}^{N} \hat{S}_{i} \log \left(\frac{\Lambda_{i}^{3 N_{i}}}{\hat{S}_{i}^{N_{i}}}\right)+P\left(g_{k}, \hat{S}_{i}\right) \tag{45}
\end{equation*}
$$

where $P\left(g_{k}, \hat{S}_{i}\right)$ is a homogeneous polynomial in $g_{k}$ and $\hat{S}_{i}$ transforming with weight 3 . On the other hand, from (23) we have

$$
\begin{equation*}
W_{e f f}\left(g_{k}, \hat{S}_{i}\right)=\left.\sum_{i} N_{i} \frac{\partial F}{\partial S_{i}}\right|_{S_{i}=\hat{S}_{i}} \tag{46}
\end{equation*}
$$

Let $F_{0}\left(S_{i}\right)$ be the $g_{k}$-independent part of $F\left(S_{i}, g_{k}\right)$. Then, eq.(45) and eq. (46) imply that $\frac{\partial F_{0}}{\partial S_{i}}=-S_{i} \log S_{i}+c S_{i}$ where $c$ is an undetermined constant. Alternatively this gives for $1 \leq i \leq N-1$

$$
\begin{equation*}
\frac{\partial F_{0}}{\partial \alpha_{i}}=-S_{i} \log S_{i}+c S_{i}+S_{N} \log S_{N}-c S_{N} \tag{47}
\end{equation*}
$$

where we have used the symmetry under the permutation of the $S_{i}$.
Let us then compare this result with the $g_{k}$-independent term in $-\frac{1}{2} \oint_{B_{i}} y$. This can be done using a scaling argument (see also [9]). Suppose we rescale all couplings $g_{k}$ by $\lambda$, so that $W^{\prime}(z) \rightarrow \lambda W^{\prime}(z), f(z) \rightarrow \lambda f(z)$ and consider $\tilde{S}_{i}=S_{i} / \lambda$ which is thus given by

$$
\begin{equation*}
\tilde{S}_{i}=-\frac{1}{2} \frac{1}{2 \pi i} \oint_{A_{i}} \sqrt{W^{\prime 2}+\frac{f}{\lambda}} \tag{48}
\end{equation*}
$$

If we then let $\lambda$ go to infinity, $\tilde{S}_{i}$ goes to zero. Geometrically this limit corresponds to vanishing $A_{i}$ cycles since $\frac{f}{\lambda} \rightarrow 0$. Therefore we can rotate the two endpoints of the cut along one vanishing cycle $A_{i}$. Under such a transformation, $S_{i}$ picks up a phase $e^{2 \pi i}$. The transformation of the cycles


Figure 2: Riemann Surface $\Sigma$ for $U(3)$
can be worked out from figure 2, under a monodromy transformation $\tilde{S}_{N} \rightarrow$ $e^{2 \pi i} S_{N}$ all the $B_{i}$ change to $B_{i}+A_{N}$ while under a monodromy transformation $\tilde{S}_{i} \rightarrow e^{2 \pi i} \tilde{S}_{i}$, with $1 \leq i \leq N-1$, only $B_{i}$ is changed in $B_{i}-A_{i}$. This implies the asymptotic form of the period integrals

$$
\begin{equation*}
-\frac{1}{2} \oint_{B_{i}} \sqrt{W^{\prime 2}+\frac{f}{\lambda}} \stackrel{\lambda \rightarrow \infty}{=}-\tilde{S}_{i} \log \tilde{S}_{i}+\tilde{S}_{N} \log \tilde{S}_{N}+\tilde{P}_{i}\left(\tilde{S}_{j}, \tilde{S}_{N}\right) \tag{49}
\end{equation*}
$$

where $\tilde{P}_{i}\left(\tilde{S}_{j}, \tilde{S}_{N}\right)$ is an invariant polynomial of $\tilde{S}_{j}$ and $\tilde{S_{N}}$ with no constant term as the period integrals vanish in the limit $\lambda \rightarrow \infty$. Therefore, we get for large $\left\{g_{k}\right\} \quad(\lambda \rightarrow \infty)$

$$
\begin{align*}
-\frac{1}{2} \oint_{B_{i}} y & =\lambda\left(-\frac{1}{2} \oint_{B_{i}} \sqrt{W^{\prime 2}+\frac{f}{\lambda}}\right)  \tag{50}\\
& =-S_{i} \log \left(\frac{S_{i}}{\lambda}\right)+S_{N} \log \left(\frac{S_{N}}{\lambda}\right)+L_{i}\left(S_{j}, S_{N}\right)
\end{align*}
$$

where $L_{i}\left(S_{j}, S_{N}\right)$ is a $g_{k}$-independent linear combination in $S_{j}$ and $S_{N}$ since only the linear terms of $\lambda \tilde{P}_{i}\left(\frac{S_{j}}{\lambda}, \frac{S_{N}}{\lambda}\right)$ contribute in the limit $\lambda \rightarrow \infty$. On the other hand we see from (44) that rescaling of $g_{k}$ by $\lambda$ corresponds simply to rescaling of $\Lambda_{i}$ so that we get

$$
\begin{equation*}
-\frac{1}{2} \oint_{B_{i}} y=-S_{i} \log \left(\frac{S_{i}}{\Lambda_{i}^{3}}\right)+S_{N} \log \left(\frac{S_{N}}{\Lambda_{N}^{3}}\right)+\tilde{c}\left(S_{i}-S_{N}\right)+\cdots \tag{51}
\end{equation*}
$$

where the dots refer to terms which depend on $g_{k}$ and where we have used the property that any choice of the basis of cycles $A_{i}$ is physically equivalent.

Thus, the comparison of eq.(39) on one hand with eq.(47) and eq.(51) on the other hand give that the "integration constant" $H_{i}\left(\alpha_{j}, \alpha_{+}\right)$is linear or
more precisely that

$$
\begin{equation*}
\frac{\partial F}{\partial \alpha_{i}}=-\frac{1}{2} \oint_{B_{i}} y+d_{1}\left(S_{i}-S_{N}\right) . \tag{52}
\end{equation*}
$$

The result (52) enables us then by use of eq.(35) to obtain the low energy couplings $\tau_{i j}\left(g_{k}\right)$ for the vector multiplets in terms of the period matrix of the Riemann surface $\Sigma$ defined by anomalous chiral ring relations (17), that is

$$
\begin{equation*}
\tau_{i j}\left(g_{k}\right)=\left.\frac{\partial^{2} F\left(g_{k}, \alpha_{i}, \alpha_{+}\right)}{\partial \alpha_{i} \partial \alpha_{j}}\right|_{\alpha_{i}=\bar{\alpha}_{i}}=2 \pi i \oint_{B_{i}} \xi_{j}+d_{1} \delta_{i j}+d_{1} \tag{53}
\end{equation*}
$$

where $\bar{\alpha}_{i}$ denotes the value on shell. In particular $\bar{\alpha}_{+}$vanishes. Since the terms proportional to $d_{1}$ do not match the structure of the 1-loop correction, we have $d_{1}=0$. Furthermore, using the result $f(z)=d_{0} g_{N}^{2} \Lambda^{2 N}$ on shell, $\Sigma$ is given by

$$
\begin{equation*}
y^{2}(z)=W^{\prime 2}(z)+d_{0} g_{N}^{2} \Lambda^{2 N} \tag{54}
\end{equation*}
$$

The constant $d_{0}$ will be fixed in the next subsection.

## 3.5 $\mathcal{N}=2$ Limit and Moduli of $\Sigma$

To complete our derivation of the low energy couplings for the massless $\mathrm{U}(1)$ vector multiplets $w_{\alpha}^{i}$ we first need to express the period matrix in eq. (53) in terms of the Casimir variables $u_{k}=\left\langle\operatorname{Tr} \phi^{k}\right\rangle,(1 \leq k \leq N)$, of the $\mathcal{N}=2$ theory [4] and then fix the constant $d_{0}$ appearing in the equation for the Riemann surface $\Sigma$.

For this purpose, if $\phi_{c}$ is the classical value of $\phi$ obtained by extremizing the tree-level superpotential, we write $W^{\prime}(z)=g_{N} P_{N}(z)$, where the coefficients of the polynomial $P_{N}(z)$ depend on $\operatorname{Tr}\left(\phi_{c}^{k}\right)$ through the relation

$$
\begin{equation*}
P_{N}(z)=\operatorname{det}\left(z I d-\phi_{c}\right) . \tag{55}
\end{equation*}
$$

We know however from section 2.3. that there are no quantum corrections to the Casimir variables i.e. that $u_{k}=\operatorname{Tr}\left(\phi_{c}^{k}\right)$. Thus, $P_{N}(z)=\langle\operatorname{det}(z I d-\phi)\rangle$ and the equation (54) for $\Sigma$ becomes $y^{2}=g_{N}^{2}\left(P_{N}(z)^{2}+d_{0} \Lambda^{2 N}\right)$ or equivalently

$$
\begin{equation*}
y^{2}=\langle\operatorname{det}(z I d-\phi)\rangle^{2}+d_{0} \Lambda^{2 N} \tag{56}
\end{equation*}
$$

The low energy couplings $\tau_{i j}\left(u_{k}\right)$ are thus given by the period matrix of the Riemann surface $\Sigma$ defined by eq.(561). Furthermore, since the expectation
values of the massless scalars are given by

$$
\begin{equation*}
a_{i}=\frac{1}{2 \pi i} \oint_{A_{i}}\left\langle\operatorname{Tr}\left(\frac{z}{z-\phi}\right)\right\rangle, \tag{57}
\end{equation*}
$$

we get from eq.(6) together with eq.(56)

$$
\begin{equation*}
a_{i}=\frac{1}{2 \pi i} \oint_{A_{i}} \frac{z P_{N}^{\prime}(z)}{y(z)} \tag{58}
\end{equation*}
$$

The two equations (531) and (58) then determine the prepotential $\mathcal{F}\left(a_{i}, \Lambda\right)$ via $\tau_{i j}\left(a_{i}\right)=\frac{\partial^{2}}{\partial a_{i} \partial a_{j}} \mathcal{F}\left(a_{i}, \Lambda\right)$ up to physically irrelevant integration constants (34.

Finally let us fix the constant $d_{0}$. This can be done in several ways. Here we will fix $d_{0}$ by comparing the prediction for the observable $u_{2}\left(a_{i}\right)$ with the explicit one-instanton calculation. Indeed, we have on one hand from the superconformal Ward identity [27, 35, 5, 6]

$$
\begin{equation*}
\frac{i N}{\pi} u_{2}=2 \mathcal{F}-\sum_{i=1}^{N-1} a_{i} \partial_{a_{i}} \mathcal{F} . \tag{59}
\end{equation*}
$$

Upon substitution of the asymptotic instanton expansion for $\mathcal{F}\left(a_{i}\right)$ this then leads to [27, 36]

$$
\begin{equation*}
u_{2}=\sum_{i} \phi_{i}^{2}+2 \sum_{k=1}^{\infty} k \mathcal{F}_{k}\left(a_{i}\right)\left(-\frac{d_{0}}{4}\right)^{k} \Lambda^{2 N k} \tag{60}
\end{equation*}
$$

with [37] $\mathcal{F}_{1}\left(a_{i}\right)=\sum_{i=1}^{N} \prod_{j \neq i} \frac{1}{\left(\phi_{i}-\phi_{j}\right)^{2}}$. Here $\phi_{i}$ stands for the diagonal entries of $\langle\phi\rangle$. Eqn (60) is then a direct consequence of (53) and (54). On the other hand, comparing (60) with the explicit one-instanton calculation [3, 25, 38, [36] implies then $d_{0}=-4$. Thus we have shown that the low energy couplings are indeed given by the period matrix of $\Sigma$ with $d_{0}=-4$.

## 4 Conclusions

In this article we have completed the field theory proof of the claim that the holomorphic effective action of $\mathcal{N}=2 S U(N)$ Yang-Mills action can be
obtained by integrating a suitable anomaly. In particular, we have field the gap that arises in field theory (not present in string theory) due to the absence of special geometry relation between the periods of the Riemann surface $\Sigma$.

In addition we have pointed out that the anomalous chiral ring relations have important consequences for the multi-instanton calculus. Indeed, the instanton contributions to the expectation values of chiral ring elements are completely fixed by the 1 -instanton observable $\left\langle\operatorname{Tr}\left(\Phi^{N-1} W^{2}\right)\right\rangle$. This also applies in a similar way to the expectation value $a_{i}=\frac{1}{2 \pi i} \oint_{A_{i}}\left\langle\operatorname{Tr}\left(\frac{z}{z-\phi}\right)\right\rangle$. On the other hand, expanding the contour integral in $\Lambda$ one reads off the contribution of the $n$-instanton contribution to the function $a_{i}\left(g_{k}\right)$ (or equivalently $a_{i}\left(u_{k}\right)$ ). This seems to suggest a recursive structure that would be interesting to investigate within the multi-instanton calculus.

## Acknowledgments:

It is a pleasure to thank Andreas Brandhuber, François Delduc, Dominique Länge, Steffen Metzger, Guiseppe Policastro, Christian Römelsberger, Samson Shatashvili and especially Peter Mayr for many helpful discussions. The work of I.S. is supported by RTN under contract 005104 ForcesUniverse, by DFG 1096, string theory and by SFB 375 of the Deutsche Forschungsgesellschaft. M.M. acknowledges support from the european network EUCLID-HPRNC-CT-2002-00325.

## Appendix

In this appendix, we prove that $y\left(z, g_{k}, S_{i}\right)=\sqrt{W^{\prime}(z)^{2}+f(z)}$ is homogeneous of degree 1 in $S_{i}$ and $g_{k}$. For that purpose, we compute the various derivatives of $y$ and compare the results obtained with the expression (34) of $y$ found in section 3.2,

$$
\begin{equation*}
y=\sum_{k=0}^{N} g_{k} d \Omega_{k}-4 \pi i \sum_{i=1}^{N-1} \alpha_{i} \xi_{i}-\alpha_{+}\left(2 N d \Omega_{+}+4 \pi i \sum_{i=1}^{N-1} \xi_{i}\right) . \tag{61}
\end{equation*}
$$

The general strategy in the computations that will be done is to identify the holomorphic contributions. Let us recall at this stage that the space of
holomorphic forms on the Riemann surface $\Sigma$ is $N-1$ dimensional and two special basis are $\left\{\xi_{i}\right\}$ and $\left\{\frac{z^{j}}{2 y}\right\}$ with $i=1, \cdots, N-1$ and $j=0, \cdots, N-2$. We change then the variables from $\left(g_{k}, S_{i}\right)$ to $\left(g_{k}, f_{i}\right)$ where $f_{i}\left(S_{j}, g_{k}\right)$ is the coefficient of order $i$ of $f(z)$. Indeed, $\frac{\partial y}{\partial f_{i}}=\frac{z^{i}}{2 y}$ is holomorphic except for $i=N-1$. However, it is easy to prove that

$$
\begin{equation*}
f_{N-1}\left(g_{k}, S_{i}\right)=-4 g_{N} \sum_{i=1}^{N} S_{i} \tag{62}
\end{equation*}
$$

by computing the residue of $y$ at infinity as it follows from the definition of $y$ and the result (61) that it is respectively equal to $\frac{f_{N-1}}{2 g_{N}}$ and to $-2 \alpha_{+}$.

We first compute the derivative w.r.t. $S_{i}$. We have successively:

$$
\begin{align*}
-\frac{1}{2}\left(\frac{\partial y}{\partial S_{i}}\right)_{S_{j}, g_{k}}\left(g_{k}, S_{j}\right) & =-\frac{1}{2} \sum_{j=0}^{N-1}\left(\frac{\partial y}{\partial f_{j}}\right)\left(\frac{\partial f_{j}}{\partial S_{i}}\right) \\
& =-\frac{1}{2} \sum_{j=0}^{N-2}\left(\frac{\partial y}{\partial f_{j}}\right)\left(\frac{\partial f_{j}}{\partial S_{i}}\right)-\frac{1}{2}\left(\frac{\partial y}{\partial f_{N-1}}\right)\left(\frac{\partial f_{N-1}}{\partial S_{i}}\right) \\
& =\sum_{j=0}^{N-2}\left(\frac{-z^{j}}{4 y} \frac{\partial f_{j}}{\partial S_{i}}\right)+\frac{g_{N} z^{N-1}}{y} . \tag{63}
\end{align*}
$$

The first contribution in the r.h.s. of (631) is a linear combination of holomorphic terms while the second term is a meromorphic form that has residue 1 at infinity.

Consider then the case $i=N$. In that case, we also have from the definition (18) of $S_{i}$

$$
\oint_{A_{i}}-\frac{1}{2}\left(\frac{\partial y}{\partial S_{N}}\right)=2 \pi i\left(\frac{\partial S_{i}}{\partial S_{N}}\right)=0
$$

for $i=1, \cdots, N-1$. Thus $-\frac{1}{2}\left(\frac{\partial y}{\partial S_{N}}\right)$ is a 1 -form whose $A_{i}$ integrals for $i=1, \cdots, N-1$ vanish and which has residue 1 at infinity. However, there is an unique form satisfying these properties and by definition it is $d \Omega_{+}$. Thus, we have shown that

$$
\begin{equation*}
-\frac{1}{2} \frac{\partial y}{\partial S_{N}}=d \Omega_{+} \tag{64}
\end{equation*}
$$

Take then $1 \leq i \leq N-1$. For $1 \leq j \leq N-1$, we get $\delta_{i j}=\frac{1}{2 \pi i} \oint_{A_{j}}-\frac{1}{2}\left(\frac{\partial y}{\partial S_{i}}\right)$. Thus, if we define the 1-form $k_{i}=-\frac{1}{2} \frac{\partial y}{\partial S_{i}}-2 \pi i \xi_{i}$ we have on one hand $\oint_{A_{j}} k_{i}=$

0 for $1 \leq j \leq N-1$ and on the other hand $\operatorname{Res}_{\infty} k_{i}=\operatorname{Res}_{\infty}\left(-\frac{1}{2} \frac{\partial y}{\partial S_{i}}\right)=1$. Thus, for the same reason as above we have $k_{i}=d \Omega_{+}$and so

$$
\begin{equation*}
-\frac{1}{2} \frac{\partial y}{\partial S_{i}}=2 \pi i \xi_{i}+d \Omega_{+} \quad \text { for } \quad 1 \leq i \leq N-1 \tag{65}
\end{equation*}
$$

It is now easy to compute the derivatives w.r.t. $\alpha_{i}$ and $\alpha_{+}$to get

$$
\begin{align*}
\frac{\partial y}{\partial \alpha_{i}} & =\frac{\partial y}{\partial S_{i}}-\frac{\partial y}{\partial S_{N}}=-4 \pi i \xi_{i}  \tag{66}\\
\frac{\partial y}{\partial \alpha_{+}} & =\sum_{i=1}^{N} \frac{\partial y}{\partial S_{i}}=-4 \pi i \sum_{i=1}^{N-1} \xi_{i}-2 N d \Omega_{+} \tag{67}
\end{align*}
$$

Let us compute now the derivative w.r.t. $g_{k}$. We have:

$$
\begin{aligned}
\frac{\partial y}{\partial g_{k}} & =\frac{z^{k} W^{\prime}}{y}+\sum_{j=0}^{N-1} \frac{z^{j}}{2 y} \frac{\partial f_{j}}{\partial g_{k}} \\
& =z^{k}\left(1-\frac{f}{2\left(W^{\prime}\right)^{2}}+\cdots\right)+\sum_{j=0}^{N-1} \frac{z^{j}}{2 y} \frac{\partial f_{j}}{\partial g_{k}} \\
& =z^{k}\left(1-\frac{f_{N-1}}{2 g_{N}^{2} z^{N+1}}+o\left(z^{-N-1}\right)\right)+\sum_{j=0}^{N-2} \frac{z^{j}}{2 y} \frac{\partial f_{j}}{\partial g_{k}}+\frac{z^{N-1}}{2 y} \frac{\partial f_{N-1}}{\partial g_{k}}(68)
\end{aligned}
$$

Suppose now that $0 \leq k \leq N-1$. Then, in eq.(68), the first term is equal to $z^{k}+$ (holomorphic terms), the second term is holomorphic and the third term vanishes by use of eq.(62). Thus, we have $\frac{\partial y}{\partial g_{k}}=z^{k}+$ (holomorphic terms). If $k=N$, it is easy to see that we come to the same conclusion thanks again to eq.(62). Furthermore,

$$
\begin{equation*}
\oint_{A_{i}} \frac{\partial y}{\partial g_{k}}=-4 \pi i \frac{\partial S_{i}}{\partial g_{k}}=0 \tag{69}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\frac{\partial y}{\partial g_{k}}=d \Omega_{k} \tag{70}
\end{equation*}
$$

We conclude that $y$ is homogeneous of degree one in $\left(\alpha_{i}, \alpha_{+}, g_{k}\right)$ (and thus in $\left.\left(S_{i}, g_{k}\right)\right)$ by comparing eq.(61) with the results (66), (67) and (70).

## References

[1] G. Veneziano and S. Yankielowicz, Phys. Lett. B 113 (1982) 231.
[2] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B 260 (1985), 157 (Yad. Fiz. 42, 1499); M.A. Shifman and A.I. Vainshtein, Nucl. Phys. B 296, (1988), 445 (Sov. Phys. JETP 66, 1100); D. Amati, G.C. Rossi and G. Veneziano, Nucl. Phys. B 249 (1985), 1; J. Fuchs and M.G. Schmidt, Z. Phys. C30 (1986), 161; D. Amati, K. Konishi, Y. Meurice, G.C. Rossi and G. Veneziano, Phys. Rep. 162 (1988) 169.
[3] D. Finnell and P. Pouliot, Nucl. Phys. B 453 (1995), 225 arXiv:hep-th/9503115.
[4] N. Seiberg and E. Witten, Nucl. Phys. B 426 (1994), 19 arXiv:hep-th/9407087|; Erratum-ibid, B 430 (1994) 485; N. Seiberg and E. Witten, Nucl. Phys. B 431 (1994), 484 arXiv:hep-th/9408099; A. Klemm, W. Lerche, S. Theisen and S. Yankielowicz, Phys. Lett. B 344 (1995) 169 arXiv:hep-th/9411048; A. Klemm, W. Lerche and S.Theisen, Int. J. Mod. Phys. A11 (1996), 1929 arXiv:hep-th/9505150; ; P. C. Argyres, A. E. Faraggi, Phys. Rev. Lett. 74 (1995), 3931 arXiv:hep-th/9411057|.
[5] P.S. Howe and P.C. West, Nucl. Phys. B 486 (1997), 425 arXiv:hep-th/9607239.
[6] M. Magro, I. Sachs and S. Wolf, Annals Phys. 298 (2002), 123 arXiv:hep-th/0110131.
[7] G. Bonelli, M. Matone and M. Tonin, Phys. Rev. D 55 (1997) 6466 arXiv:hep-th/9610026; R. Flume, M. Magro, L.O'Raifeartaigh, I. Sachs and O. Schnetz, Nucl. Phys. B 494 (1997), 331 arXiv:hep-th/9611123.
[8] M. Magro, L. O'Raifeartaigh and I. Sachs, Nucl. Phys. B 508 (1997), 433 arXiv:hep-th/9704027.
[9] F. Cachazo, K. Intriligator and C. Vafa, Nucl. Phys. B 603 (2001), 3 arXiv:hep-th/0103067
[10] F. Cachazo and C. Vafa, [arXiv hep-th/0206017].
[11] R. Dijkgraaf and C. Vafa, [arXiv hep-th/0208048].
[12] F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, JHEP 0212 (2002), 071 arXiv:hep-th/0211170.
[13] S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, Nucl. Phys. B459 (1996), 537 arXiv:hep-th/9508155.
[14] S. Katz, A. Klemm and C. Vafa, Nucl. Phys. B 497 (1997) 173 arXiv:hep-th/9609239.
[15] A. Klemm, W. Lerche, P. Mayr, C. Vafa and N. P. Warner, Nucl. Phys. B477 (1996), 746 arXiv:hep-th/9604034|; E. Witten, Nucl. Phys. B 500 (1997) 3 arXiv:hep-th/9703166|.
[16] N. Nekrasov, Adv. Theor. Math. Phys. 7 (2004) 831 arXiv:hep-th/0206161] N. Nekrasov and S. Shadchin, Commun. Math. Phys. 252 (2004) 359; arXiv:hep-th/0404225; W. Moore, N. Nekrasov and S. Shatashvili, Commun. Math. Phys. 209 (2000) 77 arXiv:hep-th/9803265.
[17] R. Flume, R. Poghossian and H. Storch, Mod. Phys. Lett. A17 (2002), 327 arXiv:hep-th/0112211; R. Flume and R. Poghossian, Int. J. Mod. Phys. A18 (2003), 2541 arXiv:hep-th/0208176.
[18] J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press.
[19] K. Konishi, Phys. Lett. B 135 (1984) 439.
[20] K. Konishi and K. Shizuya, Nuovo. Cim. A90 (1985), 111.
[21] S. J. Gates, M. T. Grisaru, M. Rocek and W. Siegel, Front. Phys. 58 (1983) 1 arXiv:hep-th/0108200.
[22] P. Svrcek, JHEP 0410 (2004), 028 hep-th/0311238.
[23] P. Svrcek, JHEP 0408 (2004) 036 |hep-th/0308037|.
[24] K. Intriligator, P. Kraus, A. V. Ryzhov, M. Shigemori and C. Vafa, Nucl. Phys. B 682 (2004) 45 arXiv:hep-th/0311181.
[25] N. Dorey, V.V. Khoze and M.P. Mattis, Phys. Rev. D54 (1996), 2921 arXiv:hep-th/9603136|; N. Dorey, T.J. Hollowood, V.V. Khoze and M.P. Mattis, Phys. Rept. 371 (2002), 231 arXiv:hep-th/0206063.
[26] A. Yung, Nucl. Phys. B485 (1997), 38 arXiv:hep-th/9605096.
[27] M. Matone, Phys. Lett. B 357 (1995) 342 arXiv:hep-th/9506102.
[28] J. D. Edelstein, M. Marino and J. Mas, Nucl. Phys. B 541 (1999) 671 arXiv:hep-th/9805172.
[29] G. Bertoldi, S. Bolognesi, M. Matone, L. Mazzucato and Y. Nakayama, JHEP 0405 (2004) 075 arXiv:hep-th/0405117.
[30] R. Dijkgraaf, M.T. Grisaru, C.S. Lam, C. Vafa and D. Zanon, Phys. Lett. B 573 (2003), 138 arXiv:hep-th/0211017.
[31] R. Dijkgraaf and C. Vafa, Nucl. Phys. B 644 (2002), 3 arXiv:hep-th/0206255.
[32] A.Gorsky, A.Marshakov, A.Mironov and A.Morozov, Nucl.Phys. B527 (1998), 690 arXiv:hep-th/9802007.
[33] P. Griffiths and J. Harris, Principles of Algebraic Geometry, A. Wiley.
[34] S. Naculich, H. Schnitzer and N. Wyllard, Nucl.Phys. B651 (2003), 106 arXiv:hep-th/0211123; M. Gomez-Reino, S.G. Naculich and H. J. Schnitzer, JHEP 0404 (2004), 033 arXiv:hep-th/0403129.
[35] J. Sonnenschein, S. Theisen and S. Yankielowicz, Phys. Lett. B 367 (1996) 145 arXiv:hep-th/9510129.
[36] K. Ito and N. Sasakura, Mod. Phys. Lett. A 12 (1997) 205 arXiv:hep-th/9609104.
[37] K. Ito and N. Sasakura, Phys. Lett. B 382 (1996) 95 arXiv:hep-th/9602073; E. D'Hoker, I. M. Krichever and D. H. Phong, Nucl. Phys. B 489 (1997) 179 arXiv:hep-th/9609041.
[38] F. Fucito and G. Travaglini, Phys.Rev. D55 (1997), 1099 arXiv:hep-th/9605215.


[^0]:    ${ }^{1}$ We use the conventions of Wess and Bagger [18

[^1]:    ${ }^{2}$ It is generally assumed that the glueball field is the appropriate variable in the low energy theory although we are not aware of a rigorous justification of this assumption within field theory (see also [24]).

[^2]:    ${ }^{3}$ This is in contrast to explicit instanton calculations in the Coulomb branch of $\mathcal{N}=2$ Yang-Mills theory (see [3, 25, 26, 16, 17] and references therein) where gauge and dilatation symmetry is spontaneously broken from the outset.

[^3]:    ${ }^{4}$ As already emphasized in the introduction $F\left(g_{k}, S_{i}\right)$ is a homogenous function in $g_{k}$ and $S_{i}$. In particular the instanton contributions are summarized in the $g_{k}$-independent integration constant which is fixed by a one-instanton calculation. See also [24] for a discussion of the ambiguities in the field theory computation of $F\left(S_{i}, g_{k}\right)$.

[^4]:    ${ }^{5}$ Note that this can always be achieved by adding a suitable linear combination of holomorphic 1-forms.

[^5]:    ${ }^{6}$ We note in passing that the superconformal anomaly equation can be combined with the Konishi anomaly $-\sum_{k}(k+1) g_{k} \frac{\partial}{\partial g_{k}} W=-2 N \hat{S}$ to show that

    $$
    \begin{equation*}
    \left(\sum_{k} g_{k} \frac{\partial}{\partial g_{k}}+\sum_{i} \hat{S}_{i} \frac{\partial}{\partial \hat{S}_{i}}-1\right) W=0 \tag{43}
    \end{equation*}
    $$

    i.e. $W_{\text {eff }}\left(g_{k}, S_{i}\right)$ is a homogenous function of degree 1.

