627 research outputs found
UV transmission through various clear films in mutation experiments
Clear films for UV mutation experiment
Adjustable platforms for collecting shot asci
Adjustable platforms for collecting shot asc
A simple explanation for the 66.7% limiting values in trad analysis
Simple explanation for limiting values in tetrad analysi
Cytochrome spectra of cytoplasmic mutants
Cytochrome spectra of cytoplasmic mutant
Quantum Locality
It is argued that while quantum mechanics contains nonlocal or entangled
states, the instantaneous or nonlocal influences sometimes thought to be
present due to violations of Bell inequalities in fact arise from mistaken
attempts to apply classical concepts and introduce probabilities in a manner
inconsistent with the Hilbert space structure of standard quantum mechanics.
Instead, Einstein locality is a valid quantum principle: objective properties
of individual quantum systems do not change when something is done to another
noninteracting system. There is no reason to suspect any conflict between
quantum theory and special relativity.Comment: Introduction has been revised, references added, minor corrections
elsewhere. To appear in Foundations of Physic
Effects of acceleration on the collision of particles in the rotating black hole spacetime
We study the collision of two geodesic particles in the accelerating and
rotating black hole spacetime and probe the effects of the acceleration of
black hole on the center-of-mass energy of the colliding particles and on the
high-velocity collision belts. We find that the dependence of the
center-of-mass energy on the acceleration in the near event-horizon collision
is different from that in the near acceleration-horizon case. Moreover, the
presence of the acceleration changes the shape and position of the
high-velocity collision belts. Our results show that the acceleration of black
holes brings richer physics for the collision of particles.Comment: 7 pages, 2 figures, The corrected version accepted for publication in
EPJ
Compactifications of Heterotic Theory on Non-Kahler Complex Manifolds: I
We study new compactifications of the SO(32) heterotic string theory on
compact complex non-Kahler manifolds. These manifolds have many interesting
features like fewer moduli, torsional constraints, vanishing Euler character
and vanishing first Chern class, which make the four-dimensional theory
phenomenologically attractive. We take a particular compact example studied
earlier and determine various geometrical properties of it. In particular we
calculate the warp factor and study the sigma model description of strings
propagating on these backgrounds. The anomaly cancellation condition and
enhanced gauge symmetry are shown to arise naturally in this framework, if one
considers the effect of singularities carefully.
We then give a detailed mathematical analysis of these manifolds and
construct a large class of them. The existence of a holomorphic (3,0) form is
important for the construction. We clarify some of the topological properties
of these manifolds and evaluate the Betti numbers. We also determine the
superpotential and argue that the radial modulus of these manifolds can
actually be stabilized.Comment: 75 pages, Harvmac, no figures; v2: Some new results added, typos
corrected and references updated. Final version to appear in JHE
On Ruelle's construction of the thermodynamic limit for the classical microcanonical entropy
In this note we make a very elementary technical observation to the effect
that Ruelle's construction of the thermodynamic limit of the classical entropy
density defined with a regularized microcanonical measure actually establishes
the thermodynamic limit for the entropy density defined with the proper
microcanonical measure. At this stage a key formula is still derived from the
regularized measures. We also show that with only minor changes in the proof
the regularization of the microcanonical measure is actually not needed at all.Comment: Short communication (7p), accepted for publication in J.Stat.Phy
Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements
Manifestations of P-,T-odd weak interaction between nucleons in nucleus are
considered. Renormalization of this interaction due to residual strong
interaction is studied. Mean squared matrix elements of P-,T-odd weak
interaction between compound states are calculated. Correlators between
P-,T-odd and P-odd, T-even weak interaction matrix elements between compound
states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure
- …