2,410 research outputs found

    Sequences of amino acid residues in bacitracin

    Get PDF

    Asphalt Mix Designs

    Get PDF

    A Brief History of Prohibition and Treatment Solutions for Substance Abusers

    Get PDF
    The predominant policy of prohibition (i.e. "War on Drugs") emerged in the early Twentieth Century. It has been expanded on since that time to become the primary thrust of drug policy in almost every nation today. We will examine how this came about and the ways in which it has contributed to the maltreatment of substance abuse disorders

    Small-Scale Magnetic Fields are Critical to Shaping Solar Gamma-Ray Emission

    Full text link
    The Sun is a bright gamma-ray source due to hadronic cosmic-ray interactions with solar gas. While it is known that incoming cosmic rays must generally first be reflected by solar magnetic fields to produce outgoing gamma rays, theoretical models have yet to reproduce the observed spectra. We introduce a simplified model of the solar magnetic fields that captures the main elements relevant to gamma-ray production. These are a flux tube, representing the network elements, and a flux sheet, representing the intergranule sheets. Both the tube and sheet have a horizontal size of order 100 km100~{\rm km} and serve as sites where cosmic rays are reflected and gamma rays are produced. Despite having no tuning to match gamma-ray data, our model produces a gamma-ray spectrum that reasonably matches both the hard spectrum seen by Fermi-LAT data at 1–200 GeV\text{1--200}~{\rm GeV} and the considerably softer spectrum seen by HAWC at near 103 GeV10^3~{\rm GeV}. We show that lower-energy (10 GeV\lesssim 10~{\rm GeV}) gamma rays are primarily produced in the network elements and higher-energy (few×10 GeV\gtrsim {\rm few} \times 10~{\rm GeV}) gamma rays in the intergranule sheets. Notably, the spectrum softening observed by HAWC results from the limited effectiveness of capturing and reflecting 104 GeV\sim 10^4~{\rm GeV} cosmic rays by the finite-sized intergranule sheets. Our study is important for understanding cosmic-ray transport in the solar atmosphere and will lead to insights about small-scale magnetic fields in the quiet photosphere.Comment: 22 pages, 12 figure

    FIRE Spectroscopy of Five Late-type T Dwarfs Discovered with the Wide-field Infrared Survey Explorer

    Get PDF
    We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette (FIRE) reveal strong water and methane absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon & Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018-7423 exhibits a suppressed K-band peak and blue spectrophotometric J-K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.Comment: 19 pages, 13 figures; accepted for publication to Ap

    SciClone: Inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution

    Get PDF
    The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy

    Resonant Inelastic X-ray Scattering Studies of Elementary Excitations

    Full text link
    In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made remarkable progress as a spectroscopic technique. This is a direct result of the availability of high-brilliance synchrotron X-ray radiation sources and of advanced photon detection instrumentation. The technique's unique capability to probe elementary excitations in complex materials by measuring their energy-, momentum-, and polarization-dependence has brought RIXS to the forefront of experimental photon science. We review both the experimental and theoretical RIXS investigations of the past decade, focusing on those determining the low-energy charge, spin, orbital and lattice excitations of solids. We present the fundamentals of RIXS as an experimental method and then review the theoretical state of affairs, its recent developments and discuss the different (approximate) methods to compute the dynamical RIXS response. The last decade's body of experimental RIXS data and its interpretation is surveyed, with an emphasis on RIXS studies of correlated electron systems, especially transition metal compounds. Finally, we discuss the promise that RIXS holds for the near future, particularly in view of the advent of x-ray laser photon sources.Comment: Review, 67 pages, 44 figure

    A T8.5 Brown Dwarf Member of the Xi Ursae Majoris System

    Get PDF
    The Wide-field Infrared Survey Explorer has revealed a T8.5 brown dwarf (WISE J111838.70+312537.9) that exhibits common proper motion with a solar-neighborhood (8 pc) quadruple star system - Xi Ursae Majoris. The angular separation is 8.5 arc-min, and the projected physical separation is about 4000 AU. The sub-solar metallicity and low chromospheric activity of Xi UMa A argue that the system has an age of at least 2 Gyr. The infrared luminosity and color of the brown dwarf suggests the mass of this companion ranges between 14 and 38 Jupiter masses for system ages of 2 and 8 Gyr respectively.Comment: AJ in press, 12 pages LaTeX with 6 figures. More astrometric data and a laser guide star adaptive optics image adde

    Correlation between Quantitative PCR and Culture-Based Methods for Measuring Enterococcus spp. over Various Temporal Scales at Three California Marine Beaches

    Get PDF
    ABSTRACT Several studies have examined how fecal indicator bacteria (FIB) measurements compare between quantitative PCR (qPCR) and the culture methods it is intended to replace. Here, we extend those studies by examining the stability of that relationship within a beach, as affected by time of day and seasonal variations in source. Enterococcus spp. were quantified at three southern California beaches in the morning and afternoon using two qPCR assays, membrane filtration, and defined-substrate testing. While qPCR and culture-based measurements were consistently and significantly correlated, strength of the correlation varied both among and within beaches. Correlations were higher in the morning (0.45 < ρ < 0.74 [ P < 0.002]) than in the afternoon (0.18 < ρ < 0.45 [ P < 0.021]) and higher when the fecal contamination was concentrated (0.38 < ρ < 0.83 [ P < 0.001]) than when it was diffuse (0.19 < ρ < 0.34 [ P < 0.003]). The ratios of culture-based and qPCR results (CFU or most probable number [MPN] per calibrator cell equivalents [CCE]) also varied spatially and temporally. Ratios ranged between 0.04 and 0.85 CFU or MPN per CCE and were lowest at the beach affected by diffuse pollution. Patterns in the ratios over the course of the day were dissimilar across beaches, increasing with time at one beach and decreasing at another. The spatial and temporal variability we observed indicate that the empirical relationship between culture-based and qPCR results is not universal, even within a beach
    corecore