16,666 research outputs found
The Surface Region of Superfluid He as a Dilute Bose-Condensed Gas
In the low-density surface region of superfluid He, the atoms are far
apart and collisions can be ignored. The only effect of the interactions is
from the long-range attractive Hartree potential produced by the distant
high-density bulk liquid. As a result, at , all the atoms occupy the same
single-particle state in the low-density tail. Striking numerical evidence for
this 100\% surface BEC was given by Pandharipande and coworkers in 1988. We
derive a generalized Gross-Pitaevskii equation for the inhomogeneous condensate
wave function in the low-density region valid at all temperatures.
The overall amplitude of is fixed by the bulk liquid, which ensures
that it vanishes everywhere at the bulk transition temperature.Comment: 6 pages, paper submitted to Low Temperature Conference (LT21),
Prague, Aug., 1996; to appear in proceeding
Acoustic waves and heating due to molecular energy transfer in an electric discharge CO laser
This paper summarizes analytical studies and the interpretation of experimental results for the compression and rarefaction waves generated in the cavity of a pulsed CO electric discharge laser. A one-dimensional analysis of acoustic waves is applied to a transversely excited laser. The influences of heating in the cathode fall, heat transfer to the cathode, flow through both the anode and cathode, and bulk heating of the plasma are included. The analysis is used to relate the bulk heating rate to observable features of the pressure and density waves. Data obtained from interferograms and reported elsewhere are used to infer the bulk heating rates in a pulsed CO laser. Results are presented for CO/Ar, CO/N2, and N2 plasmas. Comparison of the data with recent theoretical results for the heating due to electron/ neutral collisions and the anharmonic defect associated with V-V energy transfer shows substantial differences at lower values of total energy deposition. The change of heating with E/N is in fairly good agreement with predicted values
Numerical calculations of a high brilliance synchrotron source and on issues with characterizing strong radiation damping effects in non-linear Thomson/Compton backscattering experiments
A number of theoretical calculations have studied the effect of radiation
reaction forces on radiation distributions in strong field counter-propagating
electron beam-laser interactions, but could these effects - including quantum
corrections - be observed in interactions with realistic bunches and focusing
fields, as is hoped in a number of soon to be proposed experiments? We present
numerical calculations of the angularly resolved radiation spectrum from an
electron bunch with parameters similar to those produced in laser wakefield
acceleration experiments, interacting with an intense, ultrashort laser pulse.
For our parameters, the effects of radiation damping on the angular
distribution and energy distribution of \emph{photons} is not easily
discernible for a "realistic" moderate emittance electron beam. However,
experiments using such a counter-propagating beam-laser geometry should be able
to measure such effects using current laser systems through measurement of the
\emph{electron beam} properties. In addition, the brilliance of this source is
very high, with peak spectral brilliance exceeding
photonssmmmrad% bandwidth with
approximately 2% efficiency and with a peak energy of 10 MeV.Comment: 11 figures, 11 page
Quantum Fluctuations in Dipolar Bose Gases
We investigate the influence of quantum fluctuations upon dipolar Bose gases
by means of the Bogoliubov-de Gennes theory. Thereby, we make use of the local
density approximation to evaluate the dipolar exchange interaction between the
condensate and the excited particles. This allows to obtain the Bogoliubov
spectrum analytically in the limit of large particle numbers. After discussing
the condensate depletion and the ground-state energy correction, we derive
quantum corrected equations of motion for harmonically trapped dipolar Bose
gases by using superfluid hydrodynamics. These equations are subsequently
applied to analyze the equilibrium configuration, the low-lying oscillation
frequencies, and the time-of-flight dynamics. We find that both atomic magnetic
and molecular electric dipolar systems offer promising scenarios for detecting
beyond mean-field effects.Comment: Published in PR
Spatial interference from well-separated condensates
We use magnetic levitation and a variable-separation dual optical plug to
obtain clear spatial interference between two condensates axially separated by
up to 0.25 mm -- the largest separation observed with this kind of
interferometer. Clear planar fringes are observed using standard (i.e.
non-tomographic) resonant absorption imaging. The effect of a weak inverted
parabola potential on fringe separation is observed and agrees well with
theory.Comment: 4 pages, 5 figures - modified to take into account referees'
improvement
Design study of test models of maneuvering aircraft configurations for the National Transonic Facility (NTF)
The feasibility of designing advanced technology, highly maneuverable, fighter aircraft models to achieve full scale Reynolds number in the National Transonic Facility (NTF) is examined. Each of the selected configurations are tested for aeroelastic effects through the use of force and pressure data. A review of materials and material processes is also included
An algorithm for determining program feasibility of a multi-mode PAM commutator telemetry system Technical report no. 10
Algorithm formulation for evaluation of strapping arrangement programs for PAM multimode commutation system of Saturn telemetry syste
- …