1,785 research outputs found

    Finite element based micro-mechanics modeling of textile composites

    Get PDF
    Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Evaluation of alternative mosquito sampling methods for malaria vectors in Lowland South - East Zambia.

    Get PDF
    Sampling malaria vectors and measuring their biting density is of paramount importance for entomological surveys of malaria transmission. Human landing catch (HLC) has been traditionally regarded as a gold standard method for surveying human exposure to mosquito bites. However, due to the risk of human participant exposure to mosquito-borne parasites and viruses, a variety of alternative, exposure-free trapping methods were compared in lowland, south-east Zambia. Centres for Disease Control and Prevention miniature light trap (CDC-LT), Ifakara Tent Trap model C (ITT-C), resting boxes (RB) and window exit traps (WET) were all compared with HLC using a 3 × 3 Latin Squares design replicated in 4 blocks of 3 houses with long lasting insecticidal nets, half of which were also sprayed with a residual deltamethrin formulation, which was repeated for 10 rounds of 3 nights of rotation each during both the dry and wet seasons. The mean catches of HLC indoor, HLC outdoor, CDC-LT, ITT-C, WET, RB indoor and RB outdoor, were 1.687, 1.004, 3.267, 0.088, 0.004, 0.000 and 0.008 for Anopheles quadriannulatus Theobald respectively, and 7.287, 6.784, 10.958, 5.875, 0.296, 0.158 and 0.458, for An. funestus Giles, respectively. Indoor CDC-LT was more efficient in sampling An. quadriannulatus and An. funestus than HLC indoor (Relative rate [95% Confidence Interval] = 1.873 [1.653, 2.122] and 1.532 [1.441, 1.628], respectively, P < 0.001 for both). ITT-C was the only other alternative which had comparable sensitivity (RR = 0.821 [0.765, 0.881], P < 0.001), relative to HLC indoor other than CDC-LT for sampling An. funestus. While the two most sensitive exposure-free techniques primarily capture host-seeking mosquitoes, both have substantial disadvantages for routine community-based surveillance applications: the CDC-LT requires regular recharging of batteries while the bulkiness of ITT-C makes it difficult to move between sampling locations. RB placed indoors or outdoors and WET had consistently poor sensitivity so it may be useful to evaluate additional alternative methods, such as pyrethrum spray catches and back packer aspirators, for catching resting mosquitoes

    Bose-Einstein condensation of photons in an optical microcavity

    Full text link
    Bose-Einstein condensation, the macroscopic ground state accumulation of particles with integer spin (bosons) at low temperature and high density, has been observed in several physical systems, including cold atomic gases and solid state physics quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition, because the chemical potential of photons vanishes and, when the temperature is reduced, photons disappear in the cavity walls. Theoretical works have considered photon number conserving thermalization processes, a prerequisite for Bose-Einstein condensation, using Compton scattering with a gas of thermal electrons, or using photon-photon scattering in a nonlinear resonator configuration. In a recent experiment, we have observed number conserving thermalization of a two-dimensional photon gas in a dye-filled optical microcavity, acting as a 'white-wall' box for photons. Here we report on the observation of a Bose-Einstein condensation of photons in a dye-filled optical microcavity. The cavity mirrors provide both a confining potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped, massive bosons. By multiple scattering off the dye molecules, the photons thermalize to the temperature of the dye solution (room temperature). Upon increasing the photon density we observe the following signatures for a BEC of photons: Bose-Einstein distributed photon energies with a massively populated ground state mode on top of a broad thermal wing, the phase transition occurring both at the expected value and exhibiting the predicted cavity geometry dependence, and the ground state mode emerging even for a spatially displaced pump spot

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli

    Get PDF
    Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies

    What traits are carried on mobile genetic elements, and why?

    Get PDF
    Although similar to any other organism, prokaryotes can transfer genes vertically from mother cell to daughter cell, they can also exchange certain genes horizontally. Genes can move within and between genomes at fast rates because of mobile genetic elements (MGEs). Although mobile elements are fundamentally self-interested entities, and thus replicate for their own gain, they frequently carry genes beneficial for their hosts and/or the neighbours of their hosts. Many genes that are carried by mobile elements code for traits that are expressed outside of the cell. Such traits are involved in bacterial sociality, such as the production of public goods, which benefit a cell's neighbours, or the production of bacteriocins, which harm a cell's neighbours. In this study we review the patterns that are emerging in the types of genes carried by mobile elements, and discuss the evolutionary and ecological conditions under which mobile elements evolve to carry their peculiar mix of parasitic, beneficial and cooperative genes

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Beyond Gross-Pitaevskii Mean Field Theory

    Full text link
    A large number of effects related to the phenomenon of Bose-Einstein Condensation (BEC) can be understood in terms of lowest order mean field theory, whereby the entire system is assumed to be condensed, with thermal and quantum fluctuations completely ignored. Such a treatment leads to the Gross-Pitaevskii Equation (GPE) used extensively throughout this book. Although this theory works remarkably well for a broad range of experimental parameters, a more complete treatment is required for understanding various experiments, including experiments with solitons and vortices. Such treatments should include the dynamical coupling of the condensate to the thermal cloud, the effect of dimensionality, the role of quantum fluctuations, and should also describe the critical regime, including the process of condensate formation. The aim of this Chapter is to give a brief but insightful overview of various recent theories, which extend beyond the GPE. To keep the discussion brief, only the main notions and conclusions will be presented. This Chapter generalizes the presentation of Chapter 1, by explicitly maintaining fluctuations around the condensate order parameter. While the theoretical arguments outlined here are generic, the emphasis is on approaches suitable for describing single weakly-interacting atomic Bose gases in harmonic traps. Interesting effects arising when condensates are trapped in double-well potentials and optical lattices, as well as the cases of spinor condensates, and atomic-molecular coupling, along with the modified or alternative theories needed to describe them, will not be covered here.Comment: Review Article (19 Pages) - To appear in 'Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment', Edited by P.G. Kevrekidis, D.J. Frantzeskakis and R. Carretero-Gonzalez (Springer Verlag
    corecore