18,377 research outputs found
Three dimensional inelastic finite element analysis of laminated composites
Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners
Spatial interference from well-separated condensates
We use magnetic levitation and a variable-separation dual optical plug to
obtain clear spatial interference between two condensates axially separated by
up to 0.25 mm -- the largest separation observed with this kind of
interferometer. Clear planar fringes are observed using standard (i.e.
non-tomographic) resonant absorption imaging. The effect of a weak inverted
parabola potential on fringe separation is observed and agrees well with
theory.Comment: 4 pages, 5 figures - modified to take into account referees'
improvement
Dielectronic recombination of W^20+ (4d^10 4f^8): addressing the half-open f-shell
A recent measurement of the dielectronic recombination (DR) of W^20+
[Schippers et al Phys. Rev. A83, 012711 (2011)] found an exceptionally large
contribution from near threshold resonances (<1eV). This still affected the
Maxwellian rate coefficient at much higher temperatures. The experimental
result was found to be a factor 4 or more than that currently in use in the
100-300eV range which is of relevance for modeling magnetic fusion plasmas. We
have carried-out DR calculations with AUTOSTRUCTURE which include all
significant single electron promotions. Our intermediate coupling (IC) results
are more than a factor of 4 larger than our LS-coupling ones at 1eV but still
lie a factor 3 below experiment here. If we assume complete (chaotic) mixing of
near-threshold autoionizing states then our results come into agreement (to
within 20%) with experiment below about 2eV. Our total IC Maxwellian rate
coefficients are 50-30% smaller than those based-on experiment over 100-300eV.Comment: 10 pages, 8 figures, submitted to Phys.Rev.
Viscosity of strongly interacting quantum fluids: spectral functions and sum rules
The viscosity of strongly interacting systems is a topic of great interest in
diverse fields.
We focus here on the bulk and shear viscosities of \emph{non-relativistic}
quantum fluids, with particular emphasis on strongly interacting ultracold
Fermi gases. We use Kubo formulas for the bulk and shear viscosity spectral
functions, and respectively, to derive exact,
non-perturbative results. Our results include: a microscopic connection between
the shear viscosity and the normal fluid density ; sum rules for
and and their evolution through the BCS-BEC
crossover; universal high-frequency tails for and the dynamic
structure factor . We use our sum rules to show that, at
unitarity, is identically zero and thus relate
to density-density correlations. We predict that frequency-dependent shear
viscosity of the unitary Fermi gas can be experimentally
measured using Bragg spectroscopy.Comment: Published versio
Photoionization and Photoelectric Loading of Barium Ion Traps
Simple and effective techniques for loading barium ions into linear Paul
traps are demonstrated. Two-step photoionization of neutral barium is achieved
using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by
excitation above the ionization threshold using a nitrogen gas laser (337 nm).
Isotopic selectivity is achieved by using a near Doppler-free geometry for
excitation of the triplet 6s6p 3P1 state. Additionally, we report a
particularly simple and efficient trap loading technique that employs an
in-expensive UV epoxy curing lamp to generate photoelectrons.Comment: 5 pages, Accepted to PRA 3/20/2007 -fixed typo -clarified figure 3
caption -added reference [15
An algorithm for determining program feasibility of a multi-mode PAM commutator telemetry system Technical report no. 10
Algorithm formulation for evaluation of strapping arrangement programs for PAM multimode commutation system of Saturn telemetry syste
Superfluid density and condensate fraction in the BCS-BEC crossover regime at finite temperatures
The superfluid density is a fundamental quantity describing the response to a
rotation as well as in two-fluid collisional hydrodynamics. We present
extensive calculations of the superfluid density \rho_s in the BCS-BEC
crossover regime of a uniform superfluid Fermi gas at finite temperatures. We
include strong-coupling or fluctuation effects on these quantities within a
Gaussian approximation. We also incorporate the same fluctuation effects into
the BCS single-particle excitations described by the superfluid order parameter
\Delta and Fermi chemical potential \mu, using the Nozi\`eres and Schmitt-Rink
(NSR) approximation. This treatment is shown to be necessary for consistent
treatment of \rho_s over the entire BCS-BEC crossover. We also calculate the
condensate fraction N_c as a function of the temperature, a quantity which is
quite different from the superfluid density \rho_s. We show that the mean-field
expression for the condensate fraction N_c is a good approximation even in the
strong-coupling BEC regime. Our numerical results show how \rho_s and N_c
depend on temperature, from the weak-coupling BCS region to the BEC region of
tightly-bound Cooper pair molecules. In a companion paper by the authors
(cond-mat/0609187), we derive an equivalent expression for \rho_s from the
thermodynamic potential, which exhibits the role of the pairing fluctuations in
a more explicit manner.Comment: 32 pages, 12 figure
- …