2,017 research outputs found
Long-term material compatibility testing system
System includes procedure for hermetically sealing solid materials and fluids in glass ampoule and use of temperature-controlled facility containing sample holder, which permits sample containers to be retrieved safely and conveniently. Solid material and fluid are sealed within chemically-clean glass ampoule according to highly detailed procedure
Flying by Ear: Blind Flight with a Music-Based Artificial Horizon
Two experiments were conducted in actual flight operations to evaluate an audio artificial horizon display that imposed aircraft attitude information on pilot-selected music. The first experiment examined a pilot's ability to identify, with vision obscured, a change in aircraft roll or pitch, with and without the audio artificial horizon display. The results suggest that the audio horizon display improves the accuracy of attitude identification overall, but differentially affects response time across conditions. In the second experiment, subject pilots performed recoveries from displaced aircraft attitudes using either standard visual instruments, or, with vision obscured, the audio artificial horizon display. The results suggest that subjects were able to maneuver the aircraft to within its safety envelope. Overall, pilots were able to benefit from the display, suggesting that such a display could help to improve overall safety in general aviation
Chiral Fermions on the Lattice
An expression for the lattice effective action induced by chiral fermions in
any even dimensions in terms of an overlap of two states is shown to have
promising properties in two dimensions: The correct abelian anomaly is
reproduced and instantons are suppressed.Comment: 9p, Postscript file, RU--93--3
Residual Stress, Mechanical Behavior and Electrical Properties of Cu/Nb Thin-Film Multilayers
Effect of compositional wavelength (modulation) on residual stress, electrical resistivities and mechanical properties of Cu/Nb thin-film multilayers sputtered onto single-crystal Si substrates, was evaluated. Electrical resistivities were measured down to 4 K using a standard 4-point probe. Differential specimen curvature was used to determine residual stress, and a microprobe was used to obtain hardness and elastic modulus. Profilometry, ion-beam analysis and TEM were used. Hardness of the Cu-Nb multilayers increased with decreasing compositional wavelength so that the layered structures had hardness values in excess of either constituent and the hardness predicted by the rule of mixtures. A peak in net residual compressive stress of the multilayers was observed at a compositional wavelength of 100 nm. No resistivity plateau was observed within the composition wavelength range studied
Casimir energy and variational methods in AdS spacetime
Following the subtraction procedure for manifolds with boundaries, we
calculate by variational methods, the Schwarzschild-Anti-de Sitter and the
Anti-de Sitter space energy difference. By computing the one loop approximation
for TT tensors we discover the existence of an unstable mode at zero
temperature, which can be stabilized by the boundary reduction method.
Implications on a foam-like space are discussed.Comment: Submitted to Classical and Quantum Gravit
Retrospective harm benefit analysis of pre-clinical animal research for six treatment interventions
The harm benefit analysis (HBA) is the cornerstone of animal research regulation and is considered to be a key ethical safeguard for animals. The HBA involves weighing the anticipated benefits of animal research against its predicted harms to animals but there are doubts about how objective and accountable this process is.i. To explore the harms to animals involved in pre-clinical animal studies and to assess these against the benefits for humans accruing from these studies; ii. To test the feasibility of conducting this type of retrospective HBA.Data on harms were systematically extracted from a sample of pre-clinical animal studies whose clinical relevance had already been investigated by comparing systematic reviews of the animal studies with systematic reviews of human studies for the same interventions (antifibrinolytics for haemorrhage, bisphosphonates for osteoporosis, corticosteroids for brain injury, Tirilazad for stroke, antenatal corticosteroids for neonatal respiratory distress and thrombolytics for stroke). Clinical relevance was also explored in terms of current clinical practice. Harms were categorised for severity using an expert panel. The quality of the research and its impact were considered. Bateson's Cube was used to conduct the HBA.The most common assessment of animal harms by the expert panel was 'severe'. Reported use of analgesia was rare and some animals (including most neonates) endured significant procedures with no, or only light, anaesthesia reported. Some animals suffered iatrogenic harms. Many were kept alive for long periods post-experimentally but only 1% of studies reported post-operative care. A third of studies reported that some animals died prior to endpoints. All the studies were of poor quality. Having weighed the actual harms to animals against the actual clinical benefits accruing from these studies, and taking into account the quality of the research and its impact, less than 7% of the studies were permissible according to Bateson's Cube: only the moderate bisphosphonate studies appeared to minimise harms to animals whilst being associated with benefit for humans.This is the first time the accountability of the HBA has been systematically explored across a range of pre-clinical animal studies. The regulatory systems in place when these studies were conducted failed to safeguard animals from severe suffering or to ensure that only beneficial, scientifically rigorous research was conducted. Our findings indicate a pressing need to: i. review regulations, particularly those that permit animals to suffer severe harms; ii. reform the processes of prospectively assessing pre-clinical animal studies to make them fit for purpose; and iii. systematically evaluate the benefits of pre-clinical animal research to permit a more realistic assessment of its likely future benefits
Superstrings on NS5 backgrounds, deformed AdS3 and holography
We study a non-standard decoupling limit of the D1/D5-brane system, which
interpolates between the near-horizon geometry of the D1/D5 background and the
near-horizon limit of the pure D5-brane geometry. The S-dual description of
this background is actually an exactly solvable two-dimensional (worldsheet)
conformal field theory: {null-deformed SL(2,R)} x SU(2) x T^4 or K3. This model
is free of strong-coupling singularities. By a careful treatment of the
SL(2,R), based on the better-understood SL(2,R) / U(1) coset, we obtain the
full partition function for superstrings on SL(2,R) x SU(2) x K3. This allows
us to compute the partition functions for the J^3 and J^2 current-current
deformations, as well as the full line of supersymmetric null deformations,
which links the SL(2,R) conformal field theory with linear dilaton theory. The
holographic interpretation of this setup is a renormalization-group flow
between the decoupled NS5-brane world-volume theory in the ultraviolet (Little
String Theory), and the low-energy dynamics of super Yang--Mills string-like
instantons in six dimensions.Comment: JHEP style, 59 pages, 1 figure; v2: minor changes, to appear in JHE
- …