68 research outputs found

    Photovoltaic potential of tin perovskites revealed through layer-by-layer investigation of optoelectronic and charge transport properties

    Full text link
    Tin perovskites are the most promising environmentally friendly alternative to lead perovskites. Among tin perovskites, FASnI3 (CH4N2SnI3) shows optimum band gap, and easy processability. However, the performance of FASnI3 based solar cells is incomparable to lead perovskites for several reasons, including energy band mismatch between the perovskite absorber film and the charge transporting layers (CTLs) for both types of carriers, i.e., for electrons (ETLs) and holes (HTLs). However, the band diagrams in the literature are inconsistent, and the charge extraction dynamics are poorly understood. In this paper, we study the energy band positions of FASnI3 based perovskites using Kelvin probe (KP) and photoelectron yield spectroscopy (PYS) to provide a precise band diagram of the most used device stack. In addition, we analyze the defects within the current energetic landscape of tin perovskites. We uncover the role of bathocuproine (BCP) in enhancing the electron extraction at the fullerene C60/BCP interface. Furthermore, we used transient surface photovoltage (tr-SPV) for the first time for tin perovskites to understand the charge extraction dynamics of the most reported HTLs such as NiOx and PEDOT, and ETLs such as C60, ICBA, and PCBM. Finally, we used Hall effect, KP, and time-resolved photoluminescence (TRPL) to estimate an accurate value of the p-doping concentration in FASnI3 and showed a consistent result of 1.5 * 1017 cm-3. Our findings prove that the energetic system of tin halide perovskites is deformed and should be redesigned independently from lead perovskites to unlock the full potential of tin perovskites.Comment: 22 pages, 5 figure

    Interface Modification for Energy Levels Alignment and Charge Extraction in CsPbI3_3 Perovskite Solar Cells

    Full text link
    In perovskite solar cells (PSCs) energy levels alignment and charge extraction at the interfaces are the essential factors directly affecting the device performance. In this work, we present a modified interface between all-inorganic CsPbI3_3 perovskite and its hole selective contact (Spiro-OMeTAD), realized by a dipole molecule trioctylphosphine oxide (TOPO), to align the energy levels. On a passivated perovskite film, by n-Octyl ammonium Iodide (OAI), we created an upward surface band-bending at the interface by TOPO treatment. This improved interface by the dipole molecule induces a better energy level alignment and enhances the charge extraction of holes from the perovskite layer to the hole transport material. Consequently, a Voc of 1.2 V and high-power conversion efficiency (PCE) of over 19% were achieved for inorganic CsPbI3_3 perovskite solar cells. Further, to demonstrate the effect of the TOPO dipole molecule, we present a layer-by-layer charge extraction study by transient surface photovoltage technique (trSPV) accomplished by charge transport simulation.Comment: 20 pages, 4 Figure

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release

    The Role of Bile in the Regulation of Exocrine Pancreatic Secretion

    Get PDF
    As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap

    Three-year performance of the IceAct telescopes at the IceCube Neutrino Observatory

    Get PDF
    IceAct is an array of compact Imaging Air Cherenkov Telescopes at the ice surface as part of the IceCube Neutrino Observatory. The telescopes, featuring a camera of 61 silicon photomultipliers and fresnel-lens-based optics, are optimized to be operated in harsh environmental conditions, such as at the South Pole. Since 2019, the first two telescopes have been operating in a stereoscopic configuration in the center of IceCube\u27s surface detector IceTop. With an energy threshold of about 10 TeV and a wide field-of-view, the IceAct telescopes show promising capabilities of improving current cosmic-ray composition studies: measuring the Cherenkov light emissions in the atmosphere adds new information about the shower development not accessible with the current detectors. First simulations indicate that the added information of a single telescope leads, e.g., to an improved discrimination between flux contributions from different primary particle species in the sensitive energy range. We review the performance and detector operations of the telescopes during the past 3 years (2020-2022) and give an outlook on the future of IceAct
    corecore