206 research outputs found

    Advances in surface EMG signal simulation with analytical and numerical descriptions of the volume conductor

    Get PDF
    Surface electromyographic (EMG) signal modeling is important for signal interpretation, testing of processing algorithms, detection system design, and didactic purposes. Various surface EMG signal models have been proposed in the literature. In this study we focus on 1) the proposal of a method for modeling surface EMG signals by either analytical or numerical descriptions of the volume conductor for space-invariant systems, and 2) the development of advanced models of the volume conductor by numerical approaches, accurately describing not only the volume conductor geometry, as mainly done in the past, but also the conductivity tensor of the muscle tissue. For volume conductors that are space-invariant in the direction of source propagation, the surface potentials generated by any source can be computed by one-dimensional convolutions, once the volume conductor transfer function is derived (analytically or numerically). Conversely, more complex volume conductors require a complete numerical approach. In a numerical approach, the conductivity tensor of the muscle tissue should be matched with the fiber orientation. In some cases (e.g., multi-pinnate muscles) accurate description of the conductivity tensor may be very complex. A method for relating the conductivity tensor of the muscle tissue, to be used in a numerical approach, to the curve describing the muscle fibers is presented and applied to representatively investigate a bi-pinnate muscle with rectilinear and curvilinear fibers. The study thus propose an approach for surface EMG signal simulation in space invariant systems as well as new models of the volume conductor using numerical methods

    Factors explaining variance in perceived pain in women with fibromyalgia

    Get PDF
    BACKGROUND: We hypothesized that a substantial proportion of the subjectively experienced variance in pain in fibromyalgia patients would be explained by psychological factors alone, but that a combined model, including neuroendocrine and autonomic factors, would give the most parsimonious explanation of variance in pain. METHODS: Psychometric assessment included McGill Pain Questionnaire, General Health Questionnaire, Hospital Anxiety and Depression Rating Scale, Eysenck personality Inventory, Neuroticism and Lie subscales, Toronto Alexithymia Scale, and Multidimensional Health Locus of Control Scale and was performed in 42 female patients with fibromyalgia and 48 female age matched random sample population controls. A subgroup of the original sample (22 fibromyalgia patients and 13 controls) underwent a pharmacological challenge test with buspirone to assess autonomic and adrenocortical reactivity to serotonergic challenge. RESULTS: Although fibromyalgia patients scored high on neuroticism, anxiety, depression and general distress, only a minor part of variance in pain was explained by psychological factors alone. High pain score was associated with high neuroticism, low baseline cortisol level and small drop in systolic blood pressure after buspirone challenge test. This model explained 41.5% of total pain in fibromyalgia patients. In population controls, psychological factors alone were significant predictors for variance in pain. CONCLUSION: Fibromyalgia patients may have reduced reactivity in the central sympathetic system or perturbations in the sympathetic-parasympathetic balance. This study shows that a biopsychosocial model, including psychological factors as well as factors related to perturbations of the autonomic nervous system and hypothalamic-pituitary-adrenal axis, is needed to explain perceived pain in fibromyalgia patients

    Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the Twelve Late Embryogenesis Abundant Protein Classes

    Get PDF
    Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168) and probably LEAP class 11 (PF04927) are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs
    • …
    corecore