24 research outputs found

    Target profiling of an antimetastatic RAPTA agent by chemical proteomics: relevance to the mode of action.

    Get PDF
    The clinical development of anticancer metallodrugs is often hindered by the elusive nature of their molecular targets. To identify the molecular targets of an antimetastatic ruthenium organometallic complex based on 1,3,5-triaza-7-phosphaadamantane (RAPTA), we employed a chemical proteomic approach. The approach combines the design of an affinity probe featuring the pharmacophore with mass-spectrometry-based analysis of interacting proteins found in cancer cell lysates. The comparison of data sets obtained for cell lysates from cancer cells before and after treatment with a competitive binder suggests that RAPTA interacts with a number of cancer-related proteins, which may be responsible for the antiangiogenic and antimetastatic activity of RAPTA complexes. Notably, the proteins identified include the cytokines midkine, pleiotrophin and fibroblast growth factor-binding protein 3. We also detected guanine nucleotide-binding protein-like 3 and FAM32A, which is in line with the hypothesis that the antiproliferative activity of RAPTA compounds is due to induction of a G2/M arrest and histone proteins identified earlier as potential targets

    A target-disease network model of second-generation BCR-ABL inhibitor action in Ph+ ALL

    Get PDF
    Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is in part driven by the tyrosine kinase bcr-abl, but imatinib does not produce long-term remission. Therefore, second-generation ABL inhibitors are currently in clinical investigation. Considering different target specificities and the pronounced genetic heterogeneity of Ph+ ALL, which contributes to the aggressiveness of the disease, drug candidates should be evaluated with regard to their effects on the entire Ph+ ALL-specific signaling network. Here, we applied an integrated experimental and computational approach that allowed us to estimate the differential impact of the bcr-abl inhibitors nilotinib, dasatinib, Bosutinib and Bafetinib. First, we determined drug-protein interactions in Ph+ ALL cell lines by chemical proteomics. We then mapped those interactions along with known genetic lesions onto public protein-protein interactions. Computation of global scores through correlation of target affinity, network topology, and distance to disease-relevant nodes assigned the highest impact to dasatinib, which was subsequently confirmed by proliferation assays. In future, combination of patient-specific genomic information with detailed drug target knowledge and network-based computational analysis should allow for an accurate and individualized prediction of therapy.Uwe Rix, a, Jacques Colinge, Katharina Blatt, Manuela Gridling, Lily L. Remsing Rix, a, Katja Parapatics, Sabine Cerny-Reiterer, Thomas R. Burkard, Ulrich Jäger, Junia V. Melo, Keiryn L. Bennett, Peter Valent, Giulio Superti-Furg

    Systems-pharmacology dissection of a drug synergy in imatinib-resistant CML

    Get PDF
    Occurrence of the BCR-ABL[superscript T315I] gatekeeper mutation is among the most pressing challenges in the therapy of chronic myeloid leukemia (CML). Several BCR-ABL inhibitors have multiple targets and pleiotropic effects that could be exploited for their synergistic potential. Testing combinations of such kinase inhibitors identified a strong synergy between danusertib and bosutinib that exclusively affected CML cells harboring BCR-ABL[superscript T315I]. To elucidate the underlying mechanisms, we applied a systems-level approach comprising phosphoproteomics, transcriptomics and chemical proteomics. Data integration revealed that both compounds targeted Mapk pathways downstream of BCR-ABL, resulting in impaired activity of c-Myc. Using pharmacological validation, we assessed that the relative contributions of danusertib and bosutinib could be mimicked individually by Mapk inhibitors and collectively by downregulation of c-Myc through Brd4 inhibition. Thus, integration of genome- and proteome-wide technologies enabled the elucidation of the mechanism by which a new drug synergy targets the dependency of BCR-ABL[superscript T315I] CML cells on c-Myc through nonobvious off targets

    Multifactorial anticancer effects of digalloyl-resveratrol encompass apoptosis, cell-cycle arrest, and inhibition of lymphendothelial gap formation in vitro

    Get PDF
    BACKGROUND: Digalloyl-resveratrol (di-GA) is a synthetic compound aimed to combine the biological effects of the plant polyhydroxy phenols gallic acid and resveratrol, which are both radical scavengers and cyclooxygenase inhibitors exhibiting anticancer activity. Their broad spectrum of activities may probably be due to adjacent free hydroxyl groups. METHODS: Protein activation and expression were analysed by western blotting, deoxyribonucleoside triphosphate levels by HPLC, ribonucleotide reductase activity by 14 C-cytidine incorporation into nascent DNA and cell-cycle distribution by FACS. Apoptosis was measured by Hoechst 33258/propidium iodide double staining of nuclear chromatin and the formation of gaps into the lymphendothelial barrier in a three-dimensional co-culture model consisting of MCF-7 tumour cell spheroids and human lymphendothelial monolayers. RESULTS: In HL-60 leukaemia cells, di-GA activated caspase 3 and dose-dependently induced apoptosis. It further inhibited cell-cycle progression in the G1 phase by four different mechanisms: rapid downregulation of cyclin D1, induction of Chk2 with simultaneous downregulation of Cdc25A, induction of the Cdk-inhibitor p21(Cip/Waf) and inhibition of ribonucleotide reductase activity resulting in reduced dCTP and dTTP levels. Furthermore, di-GA inhibited the generation of lymphendothelial gaps by cancer cell spheroid-secreted lipoxygenase metabolites. Lymphendothelial gaps, adjacent to tumour bulks, can be considered as gates facilitating metastatic spread. CONCLUSION: These data show that di-GA exhibits three distinct anticancer activities: induction of apoptosis, cell-cycle arrest and disruption of cancer cell-induced lymphendothelial disintegration. British Journal of Cancer (2010) 102, 1361-1370. doi:10.1038/sj.bjc.6605656 www.bjcancer.com (C) 2010 Cancer Research U

    Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical- and phosphoproteomics

    No full text
    Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry-based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer

    A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis

    No full text
    International audienceNecroptosis is a form of regulated necrotic cell death mediated by receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3. Necroptotic cell death contributes to the pathophysiology of several disorders involving tissue damage, including myocardial infarction, stroke and ischemia-reperfusion injury. However, no inhibitors of necroptosis are currently in clinical use. Here we performed a phenotypic screen for small-molecule inhibitors of tumor necrosis factor-alpha (TNF-α)-induced necroptosis in Fas-associated protein with death domain (FADD)-deficient Jurkat cells using a representative panel of Food and Drug Administration (FDA)-approved drugs. We identified two anti-cancer agents, ponatinib and pazopanib, as submicromolar inhibitors of necroptosis. Both compounds inhibited necroptotic cell death induced by various cell death receptor ligands in human cells, while not protecting from apoptosis. Ponatinib and pazopanib abrogated phosphorylation of mixed lineage kinase domain-like protein (MLKL) upon TNF-α-induced necroptosis, indicating that both agents target a component upstream of MLKL. An unbiased chemical proteomic approach determined the cellular target spectrum of ponatinib, revealing key members of the necroptosis signaling pathway. We validated RIPK1, RIPK3 and transforming growth factor-β-activated kinase 1 (TAK1) as novel, direct targets of ponatinib by using competitive binding, cellular thermal shift and recombinant kinase assays. Ponatinib inhibited both RIPK1 and RIPK3, while pazopanib preferentially targeted RIPK1. The identification of the FDA-approved drugs ponatinib and pazopanib as cellular inhibitors of necroptosis highlights them as potentially interesting for the treatment of pathologies caused or aggravated by necroptotic cell death

    A chemical biology approach identifies AMPK as a modulator of melanoma oncogene MITF

    No full text
    International audienceThe microphthalmia-associated transcription factor (MITF) is indispensable for the viability of melanocytic cells, is an oncogene in melanoma and has a cell type-specific expression pattern. As the modulation of MITF activity by direct chemical targeting remains a challenge, we assessed a panel of drugs for their ability to downregulate MITF expression or activity by targeting its upstream modulators. We found that the multi-kinase inhibitors midostaurin and sunitinib downregulate MITF protein levels. To identify the target molecules shared by both the drugs in melanocytic cells, a chemical proteomic approach was applied and AMP-activated kinase (AMPK) was identified as the relevant target for the observed phenotype. RNA interference and chemical inhibition of AMPK led to a decrease in MITF protein levels. Reduction of MITF protein levels was the result of proteasomal degradation, which was preceded by enhanced phosphorylation of MITF mediated by ERK. As expected, downregulation of MITF protein levels by AMPK inhibition was associated with decreased viability. Together, these results identify AMPK as an important regulator for the maintenance of MITF protein levels in melanocytic cells

    Identification of kinase inhibitor targets in the lung cancer microenvironment by chemical and phosphoproteomics

    No full text
    International audienceA growing number of gene mutations, which are recognized as cancer drivers, can be successfully targeted with drugs. The redundant and dynamic nature of oncogenic signaling networks and complex interactions between cancer cells and the microenvironment, however, can cause drug resistance. While these challenges can be addressed by developing drug combinations or polypharmacology drugs, this benefits greatly from a detailed understanding of the proteome-wide target profiles. Using mass spectrometry-based chemical proteomics, we report the comprehensive characterization of the drug-protein interaction networks for the multikinase inhibitors dasatinib and sunitinib in primary lung cancer tissue specimens derived from patients. We observed in excess of 100 protein kinase targets plus various protein complexes involving, for instance, AMPK, TBK1 (sunitinib), and ILK (dasatinib). Importantly, comparison with lung cancer cell lines and mouse xenografts thereof showed that most targets were shared between cell lines and tissues. Several targets, however, were only present in tumor tissues. In xenografts, most of these proteins were of mouse origin suggesting that they originate from the tumor microenvironment. Furthermore, intersection with subsequent global phosphoproteomic analysis identified several activated signaling pathways. These included MAPK, immune, and integrin signaling, which were affected by these drugs in both cancer cells and the microenvironment. Thus, the combination of chemical and phosphoproteomics can generate a systems view of proteins, complexes, and signaling pathways that are simultaneously engaged by multitargeted drugs in cancer cells and the tumor microenvironment. This may allow for the design of novel anticancer therapies that concurrently target multiple tumor compartments

    Evaluating the Promiscuous Nature of Tyrosine Kinase Inhibitors Assessed in A431 Epidermoid Carcinoma Cells by Both Chemical- and Phosphoproteomics

    No full text
    Deregulation of protein tyrosine kinase signaling has been linked to many diseases, most notably cancer. As a consequence, small molecule inhibitors of protein tyrosine kinases may provide powerful strategies for treatment. Following the successful introduction of imatinib in the treatment of chronic myelogenous leukemia, such drugs are also now evaluated for other types of cancer. However, many developed kinase inhibitors are not very target-specific and therefore may induce side effects. The importance of such side effects is certainly cell-proteome dependent. Understanding the all-inclusive action of a tyrosine kinase inhibitor on each individual cell-type entails the identification of potential targets, combined with monitoring the downstream effects revealing the signaling networks involved. Here, we explored a multilevel quantitative mass spectrometry–based proteomic strategy to identify the direct targets and downstream signaling effect of four tyrosine kinase inhibitors (imatinib, dasatinib, bosutinib, and nilotinib) in epidermoid carcinoma cells, as a model system for skin-cancer. More than 25 tyrosine kinases showed affinity to the drugs, with imatinib and nilotinib displaying a high specificity, especially when compared to dasatinib and bosutinib. Consequently, the latter two drugs showed a larger effect on downstream phosphotyrosine signaling. Many of the proteins affected are key regulators in cell adhesion and invasion. Our data represents a multiplexed view on the promiscuous action of certain tyrosine kinase inhibitors that needs to be taking into consideration prior to the application of these drugs in the treatment of different forms of cancer

    Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy

    No full text
    International audienceActivated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents
    corecore