1,046 research outputs found

    Nuclear shadowing in inclusive and tagged deuteron structure functions and extraction of F_2^p-F_2^n at small x from electron-deuteron collider data

    Full text link
    We review predictions of the theory of leading twist nuclear shadowing for inclusive unpolarized and polarized deuteron structure functions F_2^D, g_1^D and b_1^D and for the tagged deuteron structure function F_2^D(x,Q^2,\vec{p}). We analyze the possibility to extract the neutron structure function F_2^n from electron-deuteron data and demonstrate that an account of leading twist nuclear shadowing leads to large corrections for the extraction of F_2^n from the future deuteron collider data both in the inclusive and in the tagged structure function modes. We suggest several strategies to address the extraction of F_2^n and to measure at the same time the effect of nuclear shadowing via the measurement of the distortion of the proton spectator spectrum in the semi-inclusive e D \to e^{\prime}NX process. We address the issue of the final state interactions in the e D \to e^{\prime}NX process and examine how they affect the extraction of F_2^n.Comment: 19 pages, 7 figures. Published in Mod. Phys. Lett.

    Asymptotic behavior of double parton distribution functions

    Full text link
    The double parton distribution functions are investigated in the region of small longitudinal momentum fractions in the leading logarithm approximation of perturbative QCD. It is shown that these functions have the factorization property in the case of one slow and one fast parton.Comment: 7 pages, revtex

    Probing coherent charmonium photoproduction off light nuclei at medium energies

    Full text link
    We demonstrate how the elementary amplitudes γNΨN\gamma N\to \Psi N, the amplitude of the nondiagonal J/ψNψNJ/\psi N\Leftrightarrow \psi' N transition, and the total J/ψNJ/\psi N and ψN\psi' N cross sections can be determined from measurements of the coherent J/ψJ/\psi and ψ\psi' photoproduction off light nuclei at moderate energies. For this purpose we provide a detailed numerical analysis of the coherent charmonium photoproduction off silicon within the generalized vector dominance model (GVDM) adjusted to account for the physics of charmonium models and color transparency phenomenon.Comment: 8 pages, 5 figures (color

    Double parton scattering in double logarithm approximation of perturbative QCD

    Full text link
    Using the explicit form of the known single distribution functions (the Green's functions) in the double logarithm approximation of perturbative QCD, we analyze the structure of splitting diagrams as a source of double parton perturbative correlations in the proton. The related phenomenological effects are discussed for the conditions of the LHC experiments.Comment: 8 pages, 1 figure, Refs. and explanations added, published version (Phys. Rev. D

    Resolving the J/\psi RHIC puzzles at LHC

    Full text link
    Experiments with gold-gold collisions at RHIC have revealed (i) stronger suppression of charmonium production at forward rapidity than at midrapidity and (ii) the similarity between the suppression degrees at RHIC and SPS energies. To describe these findings we employ the model that includes nuclear shadowing effects, calculated within the Glauber-Gribov theory, rapidity-dependent absorptive mechanism, caused by energy-momentum conservation, and dissociation and recombination of the charmonium due to interaction with co-moving matter. The free parameters of the model are tuned and fixed by comparison with experimental data at lower energies. A good agreement with the RHIC results concerning the rapidity and centrality distributions is obtained for both heavy Au+Au and light Cu+Cu colliding system. For pA and A+A collisions at LHC the model predicts stronger suppression of the charmonium and bottomonium yields in stark contrast to thermal model predictions.Comment: SQM2008 proceedings, 6 page

    A fresh look at double parton scattering

    Full text link
    A revised formula for the inclusive cross section for double parton scattering in terms of the modified collinear two-parton distributions extracted from deep inelastic scattering is suggested. The possible phenomenological issues are discussed.Comment: 6 pages, 2 figures, revtex4, discussion slightly modified, 3 references adde

    Vector Meson Production in Ultraperipheral Heavy Ion Collisions

    Full text link
    The ultraperipheral heavy ion collisions (UPC's) are an important alternative to study the QCD dynamics until the next generation of e+e/ep/eAe^+e^-/ ep / eA colliders become reality. Due to the coherent action of all the protons in the nucleus, the electromagnetic field is very strong and the resulting flux of equivalent photons is large, which allows to study two-photon as well as photonuclear interactions at high energies. In this paper we present a brief review of the vector meson production in UPC's at high energies using the QCD color dipole approach to describe their photonuclear production and the perturbative QCD Pomeron (BFKL dynamics) to describe the double meson production in photon-photon process. Predictions for rates and integrated cross sections are presented for energies of RHIC and LHC.Comment: 16 pages, 1 figure. Version to be published in Journal of Physics G: Nuclear and Particle Physic

    Gluon-gluon contributions to the production of continuum diphoton pairs at hadron colliders

    Full text link
    We compute the contributions to continuum photon pair production at hadron colliders from processes initiated by gluon-gluon and gluon-quark scattering into two photons through a four-leg virtual quark loop. Complete two-loop cross sections in perturbative quantum chromodynamics are combined with contributions from soft parton radiation resummed to all orders in the strong coupling strength. The structure of the resummed cross section is examined in detail, including a new type of unintegrated parton distribution function affecting azimuthal angle distributions of photons in the pair's rest frame. As a result of this analysis, we predict diphoton transverse momentum distributions in gluon-gluon scattering in wide ranges of kinematic parameters at the Fermilab Tevatron collider and the CERN Large Hadron Collider.Comment: 28 pages, 11 figures; published versio

    Prompt neutrino fluxes from atmospheric charm

    Full text link
    We calculate the prompt neutrino flux from atmospheric charm production by cosmic rays, using the dipole picture in a perturbative QCD framework, which incorporates the parton saturation effects present at high energies. We compare our results with the next-to-leading order perturbative QCD result and find that saturation effects are large for neutrino energies above 10^6 GeV, leading to a substantial suppression of the prompt neutrino flux. We comment on the range of prompt neutrino fluxes due to theoretical uncertainties.Comment: 13 pages with 11 figures; expanded discussion, added references, version to be published in Phys. Rev.

    Increase with energy of parton transverse momenta in the fragmentation region in DIS and related phenomena

    Full text link
    The dipole and the DGLAP approximations are combined with the ktk_t factorization theorem to demonstrate the fundamental property of pQCD: smaller is the size of the colorless quark-gluon configurations in the fragmentation region, more rapid is the increase of its interaction with the target as a function of energy. First, we show that the transverse momenta of the quark(antiquark) within the qqˉq\bar{q} pair, produced in the fragmentation region by the strongly virtual photon, increase with the decrease of x for fixed Q2Q^2. As practical consequence of these effects we show that the cross sections of DIS and DVCS. We predict that the ratio of DVCS to DIS amplitudes should very slowly approach one from above at very large collision energies. Second, we study a closely related phenomenon of the increase of the transverse momenta with the energy of the characteristic transverse momenta of the gluon/quark configurations responsible for the transition to the black disk regime. We discuss the impact of this phenomenona on the slowing of the dependence on the initial energy of the coherence length. We demonstrate that a rapid projectile has the biconcave shape, which is different from the expectations of the preQCD parton model where a fast hadron has a pancake shape. We show that the increase of the transverse momenta leads to a new expression for the total cross section of a DIS scattering at very large energies, relevant to LHeC and LHC. We discuss the impact of the discovered phenomena on the hard processes in pp collisions, and on the dominance ofdifferent phases of chiral and conformal symmetries in the central and peripheral pp, pA, and AA collisions.Comment: 37 pages, 6 figures, uses file pdfsync.sty some typos and misspellings are eliminate
    corecore