7 research outputs found

    The Disparate Effects of Strategic Manipulation

    Full text link
    When consequential decisions are informed by algorithmic input, individuals may feel compelled to alter their behavior in order to gain a system's approval. Models of agent responsiveness, termed "strategic manipulation," analyze the interaction between a learner and agents in a world where all agents are equally able to manipulate their features in an attempt to "trick" a published classifier. In cases of real world classification, however, an agent's ability to adapt to an algorithm is not simply a function of her personal interest in receiving a positive classification, but is bound up in a complex web of social factors that affect her ability to pursue certain action responses. In this paper, we adapt models of strategic manipulation to capture dynamics that may arise in a setting of social inequality wherein candidate groups face different costs to manipulation. We find that whenever one group's costs are higher than the other's, the learner's equilibrium strategy exhibits an inequality-reinforcing phenomenon wherein the learner erroneously admits some members of the advantaged group, while erroneously excluding some members of the disadvantaged group. We also consider the effects of interventions in which a learner subsidizes members of the disadvantaged group, lowering their costs in order to improve her own classification performance. Here we encounter a paradoxical result: there exist cases in which providing a subsidy improves only the learner's utility while actually making both candidate groups worse-off--even the group receiving the subsidy. Our results reveal the potentially adverse social ramifications of deploying tools that attempt to evaluate an individual's "quality" when agents' capacities to adaptively respond differ.Comment: 29 pages, 4 figure

    'It's Reducing a Human Being to a Percentage'; Perceptions of Justice in Algorithmic Decisions

    Full text link
    Data-driven decision-making consequential to individuals raises important questions of accountability and justice. Indeed, European law provides individuals limited rights to 'meaningful information about the logic' behind significant, autonomous decisions such as loan approvals, insurance quotes, and CV filtering. We undertake three experimental studies examining people's perceptions of justice in algorithmic decision-making under different scenarios and explanation styles. Dimensions of justice previously observed in response to human decision-making appear similarly engaged in response to algorithmic decisions. Qualitative analysis identified several concerns and heuristics involved in justice perceptions including arbitrariness, generalisation, and (in)dignity. Quantitative analysis indicates that explanation styles primarily matter to justice perceptions only when subjects are exposed to multiple different styles---under repeated exposure of one style, scenario effects obscure any explanation effects. Our results suggests there may be no 'best' approach to explaining algorithmic decisions, and that reflection on their automated nature both implicates and mitigates justice dimensions.Comment: 14 pages, 3 figures, ACM Conference on Human Factors in Computing Systems (CHI'18), April 21--26, Montreal, Canad

    On Fairness, Diversity and Randomness in Algorithmic Decision Making

    Get PDF
    Consider a binary decision making process where a single machine learning classifier replaces a multitude of humans. We raise questions about the resulting loss of diversity in the decision making process. We study the potential benefits of using random classifier ensembles instead of a single classifier in the context of fairness-aware learning and demonstrate various attractive properties: (i) an ensemble of fair classifiers is guaranteed to be fair, for several different measures of fairness, (ii) an ensemble of unfair classifiers can still achieve fair outcomes, and (iii) an ensemble of classifiers can achieve better accuracy-fairness trade-offs than a single classifier. Finally, we introduce notions of distributional fairness to characterize further potential benefits of random classifier ensembles.Comment: Presented as a poster at the 2017 Workshop on Fairness, Accountability, and Transparency in Machine Learning (FAT/ML 2017
    corecore