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Abstract

Consider a binary decision making process where
a single machine learning classifier replaces a mul-
titude of humans. We raise questions about the
resulting loss of diversity in the decision making
process. We study the potential benefits of using
random classifier ensembles instead of a single
classifier in the context of fairness-aware learning
and demonstrate various attractive properties: (i)
an ensemble of fair classifiers is guaranteed to be
fair, for several different measures of fairness, (ii)
an ensemble of unfair classifiers can still achieve
fair outcomes, and (iii) an ensemble of classifiers
can achieve better accuracy-fairness trade-offs
than a single classifier. Finally, we introduce
notions of distributional fairness to characterize
further potential benefits of random classifier en-
sembles.

1 Introduction

A number of recent works have examined fairness
concerns arising from the recent trend of replac-
ing human decision makers with systems based
on machine learning in scenarios ranging from
recidivism risk estimation |3, 6, 15] and welfare
benefit eligibility [13] to loan approvals and credit
scoring [9]. However, these studies have largely
overlooked the implicit loss in decision process di-
versity that results from replacing a large number
of human decision makers, each of whom might
have their own distinct decision criteria, with a

single decision making algorithm.

When humans make decisions, the decision pro-
cess diversity is inevitable due to our limited cog-
nitive capacities. For instance, no single human
judge can possibly estimate recidivism risk for all
criminals in a city or country. Consequently, in
practice, individual cases are assigned to a ran-
domly selected sub-panel of one or more randomly
selected judges [1, 2]. Random assignment is key
to achieving fair treatment, as different sub-panels
of human judges might make decisions differently
and each case should have an equal chance of
being judged by every possible sub-panel.

In contrast, a single decision making algorithm
can be scaled easily to handle any amount of work-
load by simply adding more computing resources.
Current practice is to replace a multitude of hu-
man decision makers with a single algorithm, such
as COMPAS for recidivism risk estimation in the
U.S. [3] or the algorithm introduced by the Pol-
ish Ministry of Labor and Social Policy, used for
welfare benefit eligibility decisions in Poland [13].
However, we remark that one could introduce di-
versity into machine decision making by instead
training a collection of algorithms (each might
capture a different “school of thought” [14] as used
by judges), randomly assigning a case to a subset,
then combining their decisions in some ensemble
manner (e.g., simple or weighted majority voting,
or unanimous consensus). Another motivation for
exploring such approaches is the rich literature
on ensemble learning, where a combination of a
diverse ensemble of predictors may been shown



(both theoretically and empirically) to outperform
single predictors on a variety of tasks [5].

Against this background, we explore the fol-
lowing question: for the purposes of fair decision
making, are there any fundamental benefits to re-
placing a single decision making algorithm with a
diverse ensemble of decision making algorithms?
In this paper, we consider the question in a re-
stricted set of scenarios, where the algorithm is a
binary classifier and the decisions for any given
user are made by a single randomly selected clas-
sifier from the ensemble. While restrictive, these
scenarios capture decision making in a number of
real-world settings (such as a randomly assigned
judge deciding whether or not grant bail to an
applicant) and reveal striking results.

Our findings, while preliminary, show that com-
pared to a single classifier, a diverse ensemble
can not only achieve better fairness in terms of
distributing beneficial outcomes more uniformly
amongst the set of deserving users, but can also
achieve better accuracy-fairness trade-offs for ex-
isting notions (measures) of unfairness such as
disparate treatment [12, 16, 17|, impact [7, 16, 17],
and mistreatment |9, 15|. Interestingly, we find
that for certain notions of fairness, a diverse en-
semble is not guaranteed to be fair even when
individual classifiers within the ensemble are fair.
On the other hand, a diverse ensemble can be fair
even when the individual classifiers comprising
the ensemble are unfair. Perhaps surprisingly, we
show that it is this latter property which enables
a diverse ensemble of individually unfair classi-
fiers to achieve better accuracy-fairness trade-offs
than any single classifier.

Our work suggests that further research in the
area of ensemble-based methods may be very fruit-
ful when designing fair learning mechanisms.

2 Fairness of classifier ensem-
bles

We first introduce our ensemble approach (ran-
domly selecting a classifier from a diverse set)
and various notions of fairness in classification,

then demonstrate interesting, and perhaps sur-
prising, properties of the ensemble classifiers. We
assume exactly one sensitive attribute (e.g., gen-
der or race) which is binary, though the results
may naturally be extended beyond a single binary
attribute.

Assume we have an ensemble Cops of M indi-
vidual classifiers {C; }jj‘/il, operating on a dataset
{(i,vi, )}, Here, z; € RY, y; € {—1,1} and
z; € {0,1} respectively denote the feature vec-
tor, class label and sensitive attribute value of
the " user. Each classifier C; : R? — {-1,1}
maps a given user feature vector x; to a predicted
outcome g; j, i.€., Yi; = Cj(x;). We assume we
are given a probability distribution p(j) over the
classifiers. Overloading notation, we consider the
ensemble classifier Cepg defined to operate on x;
by first selecting some Cj, € Cepns independently at
random according to the distribution p, and then
returning Cens(x;) = Cp(x;) € {—1,1}. *

Two common notions used to assess the fair-
ness of a decision making system require that
a classifier should provide [4]: (1) Equality of
treatment, i.e., its prediction for a user should
not depend on the user’s sensitive attribute value
(e.g., man, woman); and/or (2) Fquality of im-
pact, i.e., rates of beneficial outcomes should be
the same for all sensitive attribute value groups
(e.g., men, women). For (2), various measures
of beneficial outcome rates have been proposed:
acceptance rates into the positive (or negative)
class for the group |7, 16, 17]; the classifier’s true
positive (or negative) rate for the group [9, 11, 15];
or the classifier’s predictive positive (or negative)
rate—also called positive (or negative) predictive
value—for the group [11, 15]. For a discussion on
these measures, see [11, 15].

!'Equivalently, this may be considered an ensemble
approach where ¢; ; = Cj(@;) is computed V7, then we
randomly output 1 or —1 with respective probabilities

Zj;giyj:1 p(j) or Zj;giyj:71 p(j)-



2.1 Is an ensemble of fair classifiers
guaranteed to be fair? In many
cases, yes.

For any ensemble Cq,s consisting of classifiers
{Cj}jj‘il as above, it is immediate to see that
if all C; satisfy equality of treatment, then Ceps
also satisfies equality of treatment.

Next, one can easily show that if all C; satisfy
equality of impact (i.e., equality of beneficial out-
come rates), where the beneficial outcome rates
are defined as the acceptance rate into the positive
(negative) class, or the true positive (negative)
rate, then Ceps will also satisfy the equality of
impact. For example, if beneficial outcome rates
are defined in terms of acceptance rate into the
positive class, and expected benefits are the same
for all C;:

E [{Cj(x) =1}] vJ,

x|2=0

= E [[{Cj(xz) =1}]
z|z=1

where I is the indicator function, then one can

show that:

E [[{Cens(z) =1} =

xz|z=0

E [{Cens(z) = 1}],

x|z=1

using linearity of expectation since all expecta-
tions are defined over groups of constant sizes
(left hand side defined over group with z = 0 and
right hand side over z = 1). The same can be
shown when beneficial outcome rates are defined
in terms of true positive (negative) rates. That
is, for the true positive rate, if it holds that:

E [[{Cjz) =1} =

x|z=0,y=1
E [{Cj(z) =1} V5,
xz|z=1,y=1

one can show that:

E []I{Cens(w) = 1}] =

x|z=0,y=1
E  [[{Cens(x) =1}].

z|z=1,y=1
On the other hand, this no longer holds if benefi-
cial outcome rates are defined in terms of positive
(negative) predictive value, since these values are

computed as expectations over the size of the
predicted positive or negative class of a classifier
C;. Specifically, the expected positive predictive
value of a classifier C; for group with z = 0 is

defined as:

E Ky = 1}].
w,y|z:O,Cj(w):1[ {y H

Since the expectation is defined over C;(x) = 1,
which changes for every j € [0, M], we can no
longer apply linearity of expectation, and hence
Cens will not in general satisfy this notion of equal-
ity of impact even when all C; do have this prop-
erty.

2.2 Can an ensemble of unfair classi-
fiers be fair? Yes.

For all fairness notions of equality of treatment
or equality of impact described above, there exist
cases where a random ensemble of unfair classifiers
can indeed be fair. Here we show examples of such
cases for equality of treatment, and for equality
of impact (or the equality of beneficial outcome
rate) where the benefit outcome rate is defined
as the fraction of users from a sensitive attribute
value groups (e.g., men, women) accepted into
the positive class [7, 16, 17]. Examples where
the benefit measure is defined in terms or error
rates [9, 15| can be similarly constructed.

Equality of treatment. Consider the example
shown in Figure 1 which shows a decision making
scenario involving two sensitive attribute value
groups, men and women, and two classifiers C;
and Cy. The equality in treatment fairness crite-
rion requires that a classifier must treat individu-
als equally regardless of their sensitive attribute
value (i.e., regardless of whether the subject be-
ing classified is a man or a woman). Observe that
neither C; nor Cy satisfies this criterion, since each
accepts only women or men, respectively. On the
other hand, an ensemble of these classifiers that
chooses C; and Cy uniformly at random satisfies
equality of treatment.
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Figure 1: A fictitious decision making scenario
involving two groups of people: men (m) and
women (w); a single feature: fi, which is gender
in this case; and two classifiers: C; and Cy. The
classifiers C; and Cy do not satisfy equality of
treatment because their outcomes solely depend
on the user’s sensitive attribute value, i.e., C; (C2)
classifies all women (all men) into the positive
class while classifying all men (all women) into the
negative class. On the other hand, an ensemble of
these classifiers that chooses classifier C; and Co
with probability % each is fair because its decisions
would not change based on the users’ gender.

Equality of impact. We provide an example
in Figure 2 where the impact fairness benefit
measure is the rate of acceptance into the posi-
tive class. Comparing the group benefits given
by C; and Co, both classifiers fail the fairness
criterion since they have different positive class
acceptance rates for men and women (shown in
the figure). However, an ensemble which selects
Cy with probability % and Cy with probability %,
achieves the same acceptance rate for both women
and men (since % x 2 women + % x 0 women =

3
3 _ 1 2 01
5§ =3 x0men+ 5 x 3 men).

2.3 Can an ensemble of classifiers
achieve better accuracy-fairness
trade-offs than a single classifier?
Yes.

First, observe that by its definition, the accuracy
of Cens is the expectation over the classifier prob-
abilities p(j) of the accuracies of the individual
classifiers C;.

When an individual classifier is optimized for
accuracy subject to a fairness constraint, a sig-
nificant loss of accuracy relative to the optimal
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Figure 2: A decision making scenario involving
two groups of people: men (m) and women (w);
two features: f1 and fo; and three classifiers: Cq,
Cy and Cs. Green quadrants indicate the ground
truth positive class in the training data, while red
quadrants indicate the respective negative class.
Within each quadrant, the points are distributed
uniformly. Gender is not one of the features (f1
and fo) used by the classifiers. Classifiers C; and
Co do not meet the equality of impact criterion
(when group benefits are measured as rates of pos-
itive class acceptance) since they assign only men
and only women to the positive class, respectively.
C3 is a fair classifier by this measure, since it gives
both men and women the same 0.22 positive class
acceptance rate. Let Cens be an ensemble that
selects classifier C; with probability %, and classi-
fier Co with probability % The ensemble, while
consisting of unfair classifiers, produces outcomes
that are fair: it has the same 0.22 positive class
acceptance rate for both men and women.

unconstrained classifier may be unavoidable. If
an ensemble is used instead, then we expand our
model class to admit combinations of several un-
fair classifiers, some of which may have signifi-
cantly higher accuracy than the optimal fair clas-
sifier —requiring only that the ensemble classifier
be fair.

We provide an example in Figure 3. We con-
sider fairness as determined by equality of rates
of positive class acceptance for men and women.
Given the distribution of data shown, for a sin-
gle classifier to be fair, it must be either at the
extreme left (everyone is classified as positive)
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Figure 3: A decision making scenario involving
one feature f1, and three classifiers: Cy, Co and
C3. A higher value of f; indicates the positive
class (green) in the training data for men, but the
negative (red) class for women. In this scenario,
no individual linear classifier can outperform 50%
accuracy, if we require equal benefits for both
groups (where benefits are measured as rates of
positive class acceptance). However, an ensemble
of C; and Cy which selects each of them with %
probability, achieves fairness (equality in benefits)
with a much better accuracy of 0.75.

or at the extreme right (everyone is classified as
negative)—in either case with accuracy of 50%,
which in this example is the optimal achievable
accuracy for a single fair classifier.

Now consider an ensemble of the two classi-
fiers C; and Co shown, selecting either one with
probability % This ensemble satisfies the fairness
criterion (with positive rates of 0.25 for each sex)
and has an accuracy of 75%, which is much better
than the single fair classifier optimum of 50%.

2.4 Notions of distributional fairness

The behavior of an ensemble classifier differs from
its constituent classifiers in subtle but important
ways. In particular, for data points (or individual
users) on which the constituent classifiers yield dif-
ferent outcomes, our approach of randomly select-
ing a single classifier introduces non-determinism
in classifier output, i.e., there is a non-zero chance
of both beneficial and non-beneficial outcomes.
We illustrate this scenario in Figure 4, show-
ing two classifiers C; and Cy, where each has fair
impact in that both C; and Cs assign beneficial
outcomes (positive class outcomes in this case) de-
terministically to 50% of men and 50% of women.
However, the classifiers differ in terms of the set of

Fraction classified as +ve class: fi
C,:0.5(w), 0.5 (m); C,: 0.5 (w), 0.5 (m)

Figure 4: Classifiers C; and Cq satisfy equality
of impact, since their beneficial outcome rates
(defined as the rates of positive class acceptance)
are the same for men and women. Consider an
ensemble of the two classifiers which chooses each
of C1 and Cy uniformly at random. The ensemble
also satisfies equality of impact, yet the distribu-
tion of beneficial outcomes is very different among
men and women: half the men (top right quad-
rant) always get the positive outcome, while half
the men (bottom left) always get the negative
outcome; whereas every woman gets the positive
outcome randomly with probability 0.5.

women that are assigned the beneficial outcomes.
By creating a % : % ensemble of both classifiers,
we ensure instead that all women have an equal
(50%) chance of the beneficial outcome (while we
still satisfy equality in impact).

This suggests an interesting question: Are the
outcomes of the ensemble classifier more fair than
those of the individual classifiers (C1 and Cz) that
comprise it?

While all these classifiers satisfy the equality
in impact fairness constraint, one could make the
case that the ensemble is more fair as it offers
all women an equal chance at getting beneficial
outcomes, whereas C; and Cy pre-determine the
subset of women who will get the beneficial out-
comes.

To our knowledge, no existing measure of algo-
rithmic fairness captures this notion of evenly dis-
tributing beneficial outcomes across all members
of an attribute group. Rather, existing fairness



measures focus on fair assignment of outcomes
between sensitive groups (inter-group fairness),
while largely ignoring fair assignment of outcomes
within a sensitive group (intra-group fairness).

These observations suggest the need in future
work for new notions of distributional fairness to
characterize the benefits achievable with diverse
classifier ensembles.

3 Discussion

We have begun to explore the properties of using
a random ensemble of classifiers in fair decision
making, focusing on randomly selecting one clas-
sifier from a diverse set. It will be interesting in
future work to explore a broader set of ensemble
methods. Fish et al. [8] examined fairness when
constructing a deterministic classifier using boost-
ing, but we are not aware of prior work in fairness
which considers how randomness in ensembles
may be helpful.

We note a similarity to a Bayesian perspective:
rather than aiming for the one true classifier, in-
stead we work with a probability distribution over
possible classifiers. An interesting question for
future work is how to update the distribution over
classifiers as more data becomes available, noting
that we may want to maintain diversity [10].

Decision making systems consisting of just one
classifier facilitate the ability of users to game
the system. On the other hand, in an ensemble
scheme such as the one we consider where a classi-
fier is randomly selected: if an individual aims to
achieve some high threshold level of probability
of a good classification, first she must acquire
knowledge about the whole set of classifiers and
the probability distribution over them, and then
she must attain features some distance beyond
the expected decision boundary of the ensemble
(‘a fence around the law’).

A common notion of fairness is that individuals
with similar features should obtain similar out-
comes. However, a single deterministic classifier
boundary causes individuals who are just on ei-
ther side to obtain completely different outcomes.

Using instead a distribution over boundaries leads
to a smoother, more robust profile of expected
outcomes, highlighting another useful property of
ensembles in the context of fair classification.
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