26 research outputs found

    Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation

    No full text
    International audienceAirborne dust modifies the thermal structure of the Martian atmosphere. The Mars Climate Sounder (MCS) first revealed local maxima of dust mass mixing ratio detached from the surface, not reproduced by global climate models (GCM). In this paper, the thermal signature of such detached layers is detected using data assimilation, an optimal combination of a GCM and observations. As dust influences the atmospheric temperatures, MCS temperature profiles are used to estimate the amount of dust in the atmosphere. Data assimilation of only MCS temperature information reproduces detached dust layers, independently confirming MCS's direct observations of dust. The resulting analyzed state has a smaller bias than an assimilation that does not estimate dust. This makes it a promising technique for Martian data assimilation, which is intended to support weather forecasting and weather research on Mars

    The Challenge of Atmospheric Data Assimilation on Mars

    No full text
    International audienceData assimilation is carried out for the Martian atmosphere with the Mars Climate Sounder (MCS) retrievals of temperature, dust, and ice. It is performed for the period Ls = 180° to Ls = 320° of Mars Year 29 with the Local Ensemble Transform Kalman Filter scheme and the Laboratoire de Météorologie Dynamique (LMD) Mars Global Climate Model (GCM). In order to deal with the forcings of aerosols (dust and water ice) on atmospheric temperatures, a framework is given for multivariate analysis. It consists of assimilating a GCM variable with the help of another GCM variable that can be more easily related to an observation. Despite encouraging results with this method, data assimilation is found to be intrinsically different for Mars and more challenging, due to the Martian atmosphere being less chaotic and exhibiting more global features than on Earth. This is reflected in the three main issues met when achieving various data assimilation experiments: (1) temperature assimilation strongly forces the GCM away from its free-running state, due to the difficulty of assimilating global atmospheric thermal tides; (2) because of model bias, assimilation of airborne dust is not able to reproduce the vertical diurnal variations of dust observed by MCS, and not present in the GCM; and (3) water ice clouds are nearly impossible to assimilate due to the difficulty to assimilate temperature to a sufficient precision. Overall, further improvements of Martian data assimilation would require an assimilation that goes beyond the local scale and more realism of the GCM, especially for aerosols and thermal tides

    Martian Polar Vortices: Comparison of Reanalyses

    No full text
    The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification

    Verification of operational numerical weather prediction model forecasts of precipitation using satellite rainfall estimates over Africa

    No full text
    Abstract Rainfall is an important variable to be able to monitor and forecast across Africa, due to its impact on agriculture, food security, climate‐related diseases and public health. Numerical weather models (NWMs) are an important component of this work, due to their complete spatial coverage, high resolution and ability to forecast into the future. In this study, the spatio‐temporal skill of short‐term forecasts of rainfall across Africa from 2016 through 2018 is evaluated. Specifically, the European Centre for Medium‐Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction‐Global Forecast System (NCEP‐GFS) forecast models are verified by Rainfall Estimates 2.0 (RFE2) and African Rainfall Climatology Version 2 (ARC2), which are fused products of satellite and in situ observations and are commonly used in analysis of African rainfall. Model rainfall forecasts show good consistency with the satellite rainfall observations in spatial distribution over Africa on the seasonal timescale. Evaluation metrics of daily and weekly forecasts show high spatial and seasonal variations over the African continent, including a strong link to the location of the inter‐tropical convergence zone (ITCZ) and topographically enhanced precipitation. The rainfall forecasts at 1 week aggregation time are improved against daily forecasts

    Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation

    No full text
    International audienceAirborne dust modifies the thermal structure of the Martian atmosphere. The Mars Climate Sounder (MCS) first revealed local maxima of dust mass mixing ratio detached from the surface, not reproduced by global climate models (GCM). In this paper, the thermal signature of such detached layers is detected using data assimilation, an optimal combination of a GCM and observations. As dust influences the atmospheric temperatures, MCS temperature profiles are used to estimate the amount of dust in the atmosphere. Data assimilation of only MCS temperature information reproduces detached dust layers, independently confirming MCS's direct observations of dust. The resulting analyzed state has a smaller bias than an assimilation that does not estimate dust. This makes it a promising technique for Martian data assimilation, which is intended to support weather forecasting and weather research on Mars
    corecore