991 research outputs found
Using formal game design methods to embed learning outcomes into game mechanics and avoid emergent behaviour
This paper offers an approach to designing game based learning experiences inspired by the Mechanics-Dynamics-Aesthetics (MDA) model (Hunicke et al, 2004) and the elemental tetrad (Schell, 2008) model for game design. A case for game based learning as an active and social learning experience is presented including arguments from both teachers and game designers concerning the value of games as learning tools. The MDA model is introduced with a classic game- based example and a non-game based observation of human behaviour demonstrating a negative effect of extrinsic motivators (Pink, 2011) and the need to closely align or embed learning outcomes into game mechanics in order to deliver an effective learning experience. The MDA model will then be applied to create a game based learning experience with the goal of teaching some of the aspects of using source code control to groups of Computer Science students. First, clear aims in terms of learning outcomes for the game are set out. Following the learning outcomes the iterative design process is explained with careful consideration and reflection on the impact of specific design decisions on the potential learning experience, and the reasons those decisions have been made and where there may be conflict between mechanics contributing to learning and mechanics for reasons of gameplay. The paper will conclude with an evaluation of results from a trial of computer science students and staff, and the perceived effectiveness of the game at delivering specific learning outcomes, and the approach for game design will be assessed
Avalanche multiplication in AlxGa1-xAs (x=0to0.60)
Electron and hole multiplication characteristics, Me and Mh, have been measured in AlxGa1-xAs (x=0-0.60) homojunction p+-i-n+ diodes with i-region thicknesses, w, from 1 μm to 0.025 μm and analyzed using a Monte Carlo model (MC). The effect of the composition on both the macroscopic multiplication characteristics and microscopic behavior is therefore shown for the first time. Increasing the alloy fraction causes the multiplication curves to be shifted to higher voltages such that the multiplication curves at any given thickness are practically parallel for different x. The Me/Mh ratio also decreases as x increases, varying from ~2 to ~1 as x increases from 0 to 0.60 in a w=1 μm p+-i-n+. The Monte-Carlo model is also used to extract ionization coefficients and dead-space distances from the measured results which cover electric field ranges from ~250 kV/cm-1200 kV/cm in each composition. These parameters can be used to calculate the nonlocal multiplication process by solving recurrence equations. Limitations to the applicability of field-dependent ionization coefficients are shown to arise however when the electric-field profile becomes highly nonunifor
Parallel solution of power system linear equations
At the heart of many power system computations lies the solution of a large sparse set of linear equations. These equations arise from the modelling of the network and are the cause of a computational bottleneck in power system analysis applications. Efficient sequential techniques have been developed to solve these equations but the solution is still too slow for applications such as real-time dynamic simulation and on-line security analysis. Parallel computing techniques have been explored in the attempt to find faster solutions but the methods developed to date have not efficiently exploited the full power of parallel processing. This thesis considers the solution of the linear network equations encountered in power system computations. Based on the insight provided by the elimination tree, it is proposed that a novel matrix structure is adopted to allow the exploitation of parallelism which exists within the cutset of a typical parallel solution. Using this matrix structure it is possible to reduce the size of the sequential part of the problem and to increase the speed and efficiency of typical LU-based parallel solution. A method for transforming the admittance matrix into the required form is presented along with network partitioning and load balancing techniques. Sequential solution techniques are considered and existing parallel methods are surveyed to determine their strengths and weaknesses. Combining the benefits of existing solutions with the new matrix structure allows an improved LU-based parallel solution to be derived. A simulation of the improved LU solution is used to show the improvements in performance over a standard LU-based solution that result from the adoption of the new techniques. The results of a multiprocessor implementation of the method are presented and the new method is shown to have a better performance than existing methods for distributed memory multiprocessors
Faster all-pairs shortest paths via circuit complexity
We present a new randomized method for computing the min-plus product
(a.k.a., tropical product) of two matrices, yielding a faster
algorithm for solving the all-pairs shortest path problem (APSP) in dense
-node directed graphs with arbitrary edge weights. On the real RAM, where
additions and comparisons of reals are unit cost (but all other operations have
typical logarithmic cost), the algorithm runs in time
and is correct with high probability.
On the word RAM, the algorithm runs in time for edge weights in . Prior algorithms used either time for
various , or time for various
and .
The new algorithm applies a tool from circuit complexity, namely the
Razborov-Smolensky polynomials for approximately representing
circuits, to efficiently reduce a matrix product over the algebra to
a relatively small number of rectangular matrix products over ,
each of which are computable using a particularly efficient method due to
Coppersmith. We also give a deterministic version of the algorithm running in
time for some , which utilizes the
Yao-Beigel-Tarui translation of circuits into "nice" depth-two
circuits.Comment: 24 pages. Updated version now has slightly faster running time. To
appear in ACM Symposium on Theory of Computing (STOC), 201
Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes
Avalanche multiplication and excess noise were measured on a series of Al0.6Ga0.4As p+in+ and n+ip+ diodes, with avalanche region thickness, w ranging from 0.026 μm to 0.85 μm. The results show that the ionization coefficient for electrons is slightly higher than for holes in thick, bulk material. At fixed multiplication values the excess noise factor was found to decrease with decreasing w, irrespective of injected carrier type. Owing to the wide Al0.6Ga0.4As bandgap extremely thin devices can sustain very high electric fields, giving rise to very low excess noise factors, of around F~3.3 at a multiplication factor of M~15.5 in the structure with w=0.026 μm. This is the lowest reported excess noise at this value of multiplication for devices grown on GaAs substrates. Recursion equation modeling, using both a hard threshold dead space model and one which incorporates the detailed history of the ionizing carriers, is used to model the nonlocal nature of impact ionization giving rise to the reduction in excess noise with decreasing w. Although the hard threshold dead space model could reproduce qualitatively the experimental results, better agreement was obtained from the history-dependent mode
Frontal Cryosectioning: An Improved Protocol for Sectioning Large Areas of Fibrous Scaffolds
Fibrous tissue engineering scaffolds, such as those produced by electrospinning, cannot achieve their clinical potential until deep cell-scaffold interactions are understood. Even the most advanced imaging techniques are limited to capturing data at depths of 100 µm due to light scatter associated with the fibers that compose these scaffolds. Conventional cross-sectional analysis provides information on relatively small volumes of space and frontal sections are difficult to generate. Current understanding of cellular penetration into fibrous scaffolds is limited predominantly to the scaffold surface. Although some information is available from cross-sections, sections vary in quality, can distort spatial scaffold properties, and offer virtually no spatial cues as to what scaffold properties instigate specific cellular responses. Without the definitive ability to understand how cells interact with the architecture of an entire scaffold it is difficult to justify scaffold modifications or in-depth cell penetration analyses until appropriate techniques are developed. To address this limitation we have developed a cryosectioning protocol that makes it possible to obtain serial frontal sections from electrospun scaffolds. Microscopic images assembled into montage images from serial sections were then used to create three-dimensional (3D) models of cellular infiltration throughout the entire scaffold
Recommended from our members
Prospects for lithium-ion batteries and beyond-a 2030 vision.
It would be unwise to assume ‘conventional’ lithium-ion batteries are approaching the end of their era and so we discuss current strategies to improve the current and next generation systems, where a holistic approach will be needed to unlock higher energy density while also maintaining lifetime and safety. We end by briefly reviewing areas where fundamental science advances will be needed to enable revolutionary new battery systems
The Role of Gamification in a Software Development Lifecycle
Teaching Software Engineering students raises a number of challenges; in particular that student developers typically demonstrate behaviours that run counter to good software development. These include failing to plan properly, failing to develop their software in a structured manner, and failing to meet specified deadlines (so called "student syndrome"). Consequentially, students exhibiting these behaviours are more likely to disengage from their studies. Even where submissions are made, they tend to be lower in quality, and may not demonstrate the true capabilities of the individual. Such alienation and disengagement is amplified by the current context of learning in a pandemic, with a wall of digital communication technology coming between teachers and learners. In this paper, the authors will identify how gamification approaches can be applied to software development education, and how they can help to better motivate and educate future software developers through computer managed delivery and assessment. As motivation is a key factor, motivational properties known in computer gaming are applied within the new context of a software engineering lifecycle. The role of intrinsic and extrinsic motivation for developers is considere. The gamified techniques identified are further enhanced with an Agile type approach. This has been particularly critical during 2020/21 where the shift to fully online learning for previously face to face taught students has placed new pressures on students and staff.
- …