1,700 research outputs found
An Enhanced Perturbational Study on Spectral Properties of the Anderson Model
The infinite- single impurity Anderson model for rare earth alloys is
examined with a new set of self-consistent coupled integral equations, which
can be embedded in the large expansion scheme ( is the local spin
degeneracy). The finite temperature impurity density of states (DOS) and the
spin-fluctuation spectra are calculated exactly up to the order . The
presented conserving approximation goes well beyond the -approximation
({\em NCA}) and maintains local Fermi-liquid properties down to very low
temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in
the impurity DOS is in accordance with Friedel's sum rule. For its shift
toward the chemical potential, compared to the {\em NCA}, can be traced back to
the influence of the vertex corrections. The width and height of the ASR is
governed by the universal low temperature energy scale . Temperature and
degeneracy -dependence of the static magnetic susceptibility is found in
excellent agreement with the Bethe-Ansatz results. Threshold exponents of the
local propagators are discussed. Resonant level regime () and intermediate
valence regime () of the model are thoroughly
investigated as a critical test of the quality of the approximation. Some
applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the
WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof
Renormalization Group Approach to Spectral Properties of the Two-Channel Anderson Impurity Model
The impurity Green function and dynamical susceptibilties for the two-channel
Anderson impurity model are calculated. An exact expression for the self-energy
of the impurity Green function is derived. The imaginary part of the
self-energy scales as \sqrt{|\w/T_K|} for serving as a hallmark for
non-Fermi behavior. The many-body resonance is pinned to a universal value
at \w=0. Its shape becomes increasingly more symmetric for
the Kondo-regimes of the model. The dynamical susceptibilities are governed by
two energy scales and and approach a constant value for \w\to 0,
whereas relation \chi''(\w)\propto \w holds for the single channel model.Comment: 4 pages, 4 figure, revte
Adaptive optimization for OpenCL programs on embedded heterogeneous systems
Heterogeneous multi-core architectures consisting of CPUs and GPUs are commonplace in today’s embedded systems. These architectures offer potential for energy efficient computing if the application task is mapped to the right core. Realizing such potential is challenging due to the complex and evolving nature of hardware and applications. This paper presents an automatic approach to map OpenCL kernels onto heterogeneous multi-cores for a given optimization criterion – whether it is faster runtime, lower energy consumption or a trade-off between them. This is achieved by developing a machine learning based approach to predict which processor to use to run the OpenCL kernel and the host program, and at what frequency the processor should operate. Instead of hand-tuning a model for each optimization metric, we use machine learning to develop a unified framework that first automatically learns the optimization heuristic for each metric off-line, then uses the learned knowledge to schedule OpenCL kernels at runtime based on code and runtime information of the program. We apply our approach to a set of representative OpenCL benchmarks and evaluate it on an ARM big.LITTLE mobile platform. Our approach achieves over 93% of the performance delivered by a perfect predictor.We obtain, on average, 1.2x, 1.6x, and 1.8x improvement respectively for runtime, energy consumption and the energy delay product when compared to a comparative heterogeneous-aware OpenCL task mapping scheme
From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model
The magnetic properties of the two-channel periodic Anderson model for
uranium ions, comprised of a quadrupolar and a magnetic doublet are
investigated through the crossover from the mixed-valent to the stable moment
regime using dynamical mean field theory. In the mixed-valent regime
ferromagnetism is found for low carrier concentration on a hyper-cubic lattice.
The Kondo regime is governed by band magnetism with small effective moments and
an ordering vector \q close to the perfect nesting vector. In the stable
moment regime nearest neighbour anti-ferromagnetism dominates for less than
half band filling and a spin density wave transition for larger than half
filling. is governed by the renormalized RKKY energy scale \mu_{eff}^2
^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure
Role of climate feedback on methane and ozone studied with a coupled ocean-atmosphere-chemistry model.
Anomalous Normal-State Properties of High-T Superconductors -- Intrinsic Properties of Strongly Correlated Electron Systems?
A systematic study of optical and transport properties of the Hubbard model,
based on Metzner and Vollhardt's dynamical mean-field approximation, is
reviewed. This model shows interesting anomalous properties that are, in our
opinion, ubiquitous to single-band strongly correlated systems (for all spatial
dimensions greater than one), and also compare qualitatively with many
anomalous transport features of the high-T cuprates. This anomalous
behavior of the normal-state properties is traced to a ``collective single-band
Kondo effect,'' in which a quasiparticle resonance forms at the Fermi level as
the temperature is lowered, ultimately yielding a strongly renormalized Fermi
liquid at zero temperature.Comment: 27 pages, latex, 13 figures, Invited for publication in Advances in
Physic
Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties
The electrodynamic properties of Ba(FeCoAs and
Ba(FeNi_{2}T^2m^*/m_b\approx 5$ in the static limit) and scattering rate that does not
disclose a simple power law. The spectral weight shifts to lower energies upon
cooling; a significant fraction is not recovered within the infrared range of
frequencies.Comment: 13 pages, 9 figure
Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors
We investigate the combined effect of Hund's and spin-orbit (SO) coupling on
superconductivity in multi-orbital systems. Hund's interaction leads to
orbital-singlet spin-triplet superconductivity, where the Cooper pair wave
function is antisymmetric under the exchange of two orbitals. We identify three
d-vectors describing even-parity orbital-singlet spin-triplet pairings among
t2g-orbitals, and find that the three d-vectors are mutually orthogonal to each
other. SO coupling further assists pair formation, pins the orientation of the
d-vector triad, and induces spin-singlet pairings with a relative phase
difference of \pi/2. In the band basis the pseudospin d-vectors are aligned
along the z-axis and correspond to momentum-dependent inter- and intra-band
pairings. We discuss quasiparticle dispersion, magnetic response, collective
modes, and experimental consequences in light of the superconductor Sr2RuO4.Comment: 6 pages, 5 figure
A New Heavy-Fermion Superconductor CeIrIn5: Relative of the Cuprates?
CeIrIn5 is a member of a new family of heavy-fermion compounds and has a
Sommerfeld specific heat coefficient of 720 mJ/mol-K2. It exhibits a bulk,
thermodynamic transition to a superconducting state at Tc=0.40 K, below which
the specific heat decreases as T2 to a small residual T-linear value.
Surprisingly, the electrical resistivity drops below instrumental resolution at
a much higher temperature T0=1.2 K. These behaviors are highly reproducible and
field-dependent studies indicate that T0 and Tc arise from the same underlying
electronic structure. The layered crystal structure of CeIrIn5 suggests a
possible analogy to the cuprates in which spin/charge pair correlations develop
well above Tc
- …
