1,700 research outputs found

    An Enhanced Perturbational Study on Spectral Properties of the Anderson Model

    Full text link
    The infinite-UU single impurity Anderson model for rare earth alloys is examined with a new set of self-consistent coupled integral equations, which can be embedded in the large NN expansion scheme (NN is the local spin degeneracy). The finite temperature impurity density of states (DOS) and the spin-fluctuation spectra are calculated exactly up to the order O(1/N2)O(1/N^2). The presented conserving approximation goes well beyond the 1/N1/N-approximation ({\em NCA}) and maintains local Fermi-liquid properties down to very low temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in the impurity DOS is in accordance with Friedel's sum rule. For N=2N=2 its shift toward the chemical potential, compared to the {\em NCA}, can be traced back to the influence of the vertex corrections. The width and height of the ASR is governed by the universal low temperature energy scale TKT_K. Temperature and degeneracy NN-dependence of the static magnetic susceptibility is found in excellent agreement with the Bethe-Ansatz results. Threshold exponents of the local propagators are discussed. Resonant level regime (N=1N=1) and intermediate valence regime (ϵf<Δ|\epsilon_f| <\Delta) of the model are thoroughly investigated as a critical test of the quality of the approximation. Some applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof

    Renormalization Group Approach to Spectral Properties of the Two-Channel Anderson Impurity Model

    Full text link
    The impurity Green function and dynamical susceptibilties for the two-channel Anderson impurity model are calculated. An exact expression for the self-energy of the impurity Green function is derived. The imaginary part of the self-energy scales as \sqrt{|\w/T_K|} for T0T\to 0 serving as a hallmark for non-Fermi behavior. The many-body resonance is pinned to a universal value 1/(2πΔ)1/(2\pi\Delta) at \w=0. Its shape becomes increasingly more symmetric for the Kondo-regimes of the model. The dynamical susceptibilities are governed by two energy scales TKT_K and ThT_h and approach a constant value for \w\to 0, whereas relation \chi''(\w)\propto \w holds for the single channel model.Comment: 4 pages, 4 figure, revte

    Adaptive optimization for OpenCL programs on embedded heterogeneous systems

    Get PDF
    Heterogeneous multi-core architectures consisting of CPUs and GPUs are commonplace in today’s embedded systems. These architectures offer potential for energy efficient computing if the application task is mapped to the right core. Realizing such potential is challenging due to the complex and evolving nature of hardware and applications. This paper presents an automatic approach to map OpenCL kernels onto heterogeneous multi-cores for a given optimization criterion – whether it is faster runtime, lower energy consumption or a trade-off between them. This is achieved by developing a machine learning based approach to predict which processor to use to run the OpenCL kernel and the host program, and at what frequency the processor should operate. Instead of hand-tuning a model for each optimization metric, we use machine learning to develop a unified framework that first automatically learns the optimization heuristic for each metric off-line, then uses the learned knowledge to schedule OpenCL kernels at runtime based on code and runtime information of the program. We apply our approach to a set of representative OpenCL benchmarks and evaluate it on an ARM big.LITTLE mobile platform. Our approach achieves over 93% of the performance delivered by a perfect predictor.We obtain, on average, 1.2x, 1.6x, and 1.8x improvement respectively for runtime, energy consumption and the energy delay product when compared to a comparative heterogeneous-aware OpenCL task mapping scheme

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Anomalous Normal-State Properties of High-Tc_c Superconductors -- Intrinsic Properties of Strongly Correlated Electron Systems?

    Full text link
    A systematic study of optical and transport properties of the Hubbard model, based on Metzner and Vollhardt's dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one), and also compare qualitatively with many anomalous transport features of the high-Tc_c cuprates. This anomalous behavior of the normal-state properties is traced to a ``collective single-band Kondo effect,'' in which a quasiparticle resonance forms at the Fermi level as the temperature is lowered, ultimately yielding a strongly renormalized Fermi liquid at zero temperature.Comment: 27 pages, latex, 13 figures, Invited for publication in Advances in Physic

    Electrodynamics of electron doped iron-pnictide superconductors: Normal state properties

    Full text link
    The electrodynamic properties of Ba(Fe0.92_{0.92}Co0.08)2_{0.08})_2As2_{2} and Ba(Fe0.95_{0.95}Ni0.05)As_{0.05})_As_{2}singlecrystalshavebeeninvestigatedbyreflectivitymeasurementsinawidefrequencyrange.Inthemetallicstate,theopticalconductivityconsistsofabroadincoherentbackgroundandanarrowDrudelikecomponentwhichdeterminesthetransportproperties;onlythelattercontributionstronglydependsonthecompositionandtemperature.Thissubsystemrevealsa single crystals have been investigated by reflectivity measurements in a wide frequency range. In the metallic state, the optical conductivity consists of a broad incoherent background and a narrow Drude-like component which determines the transport properties; only the latter contribution strongly depends on the composition and temperature. This subsystem reveals a T^2behaviorinthedcresistivityandscatteringratedisclosingahiddenFermiliquidbehaviorinthe122ironpnictidefamily.AnextendedDrudeanalysisyieldsthefrequencydependenceoftheeffectivemass(with behavior in the dc resistivity and scattering rate disclosing a hidden Fermi-liquid behavior in the 122 iron-pnictide family. An extended Drude analysis yields the frequency dependence of the effective mass (with m^*/m_b\approx 5$ in the static limit) and scattering rate that does not disclose a simple power law. The spectral weight shifts to lower energies upon cooling; a significant fraction is not recovered within the infrared range of frequencies.Comment: 13 pages, 9 figure

    Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors

    Full text link
    We investigate the combined effect of Hund's and spin-orbit (SO) coupling on superconductivity in multi-orbital systems. Hund's interaction leads to orbital-singlet spin-triplet superconductivity, where the Cooper pair wave function is antisymmetric under the exchange of two orbitals. We identify three d-vectors describing even-parity orbital-singlet spin-triplet pairings among t2g-orbitals, and find that the three d-vectors are mutually orthogonal to each other. SO coupling further assists pair formation, pins the orientation of the d-vector triad, and induces spin-singlet pairings with a relative phase difference of \pi/2. In the band basis the pseudospin d-vectors are aligned along the z-axis and correspond to momentum-dependent inter- and intra-band pairings. We discuss quasiparticle dispersion, magnetic response, collective modes, and experimental consequences in light of the superconductor Sr2RuO4.Comment: 6 pages, 5 figure

    A New Heavy-Fermion Superconductor CeIrIn5: Relative of the Cuprates?

    Full text link
    CeIrIn5 is a member of a new family of heavy-fermion compounds and has a Sommerfeld specific heat coefficient of 720 mJ/mol-K2. It exhibits a bulk, thermodynamic transition to a superconducting state at Tc=0.40 K, below which the specific heat decreases as T2 to a small residual T-linear value. Surprisingly, the electrical resistivity drops below instrumental resolution at a much higher temperature T0=1.2 K. These behaviors are highly reproducible and field-dependent studies indicate that T0 and Tc arise from the same underlying electronic structure. The layered crystal structure of CeIrIn5 suggests a possible analogy to the cuprates in which spin/charge pair correlations develop well above Tc
    corecore