66 research outputs found

    Stress-Induced Lamellar Order in Spider Silk Fibers

    Get PDF

    Determination of the packing fraction in photonic glass using synchrotron radiation nanotomography

    Get PDF
    Photonic glass is a material class that can be used as photonic broadband reflectors, for example in the infrared regime as thermal barrier coating films. Photonic properties such as the reflectivity depend on the ordering and material packing fraction over the complete film thickness of up to 100 ÎĽm. Nanotomography allows acquiring these key parameters throughout the sample volume at the required resolution in a non-destructive way. By performing a nanotomography measurement at the PETRA III beamline P05 on a photonic glass film, the packing fraction throughout the complete sample thickness was analyzed. The results showed a packing fraction significantly smaller than the expected random close packing giving important information for improving the fabrication and processing methods of photonic glass material in the future

    Dataset of ptychographic X-ray computed tomography of inverse opal photonic crystals produced by atomic layer deposition

    Get PDF
    This data article describes the detailed parameters for synthesizing mullite inverse opal photonic crystals via Atomic Layer Deposition (ALD), as well as the detailed image analysis routine used to interpret the data obtained by the measurement of such photonic crystals, before and after the heat treatment, via Ptychographic X-ray Computed Tomography (PXCT). The data presented in this article are related to the research article by Furlan and co-authors entitled "Photonic materials for high-temperature applications: Synthesis and characterization by X-ray ptychographic tomography" (Furlan et al., 2018). The data include detailed information about the ALD super-cycle process to generate the ternary oxides inside a photonic crystal template, the raw data from supporting characterization techniques, as well as the full dataset obtained from PXCT. All the data herein described is publicly available in a Mendeley Data archive "Dataset of synthesis and characterization by PXCT of ALD-based mullite inverse opal photonic crystals" located at https://data.mendeley.com/datasets/zn49dsk7x6/1 for any academic, educational, or research purposes

    Structural diversity of native Major Ampullate, Minor Ampullate, Cylindriform, and Flagelliform silk proteins in solution

    Get PDF
    The foundations of silk spinning, the structure, storage, and activation of silk proteins, remain highly debated. By combining solution small-angle neutron and X-ray scattering (SANS and SAXS) alongside circular dichroism (CD), we reveal a shape anisotropy of the four principal native spider silk feedstocks from Nephila edulis. We show that these proteins behave in solution like elongated semiflexible polymers with locally rigid sections. We demonstrated that minor ampullate and cylindriform proteins adopt a monomeric conformation, while major ampullate and flagelliform proteins have a preference for dimerization. From an evolutionary perspective, we propose that such dimerization arose to help the processing of disordered silk proteins. Collectively, our results provide insights into the molecular-scale processing of silk, uncovering a degree of evolutionary convergence in protein structures and chemistry that supports the macroscale micellar/pseudo liquid crystalline spinning mechanisms proposed by the community

    Pushing the temporal resolution in absorption and Zernike phase contrast nanotomography: Enabling fast in situ experiments

    Get PDF
    Hard X-ray nanotomography enables 3D investigations of a wide range of samples with high resolution (<100 nm) with both synchrotron-based and laboratory-based setups. However, the advantage of synchrotron-based setups is the high flux, enabling time resolution, which cannot be achieved at laboratory sources. Here, the nanotomography setup at the imaging beamline P05 at PETRA III is presented, which offers high time resolution not only in absorption but for the first time also in Zernike phase contrast. Two test samples are used to evaluate the image quality in both contrast modalities based on the quantitative analysis of contrast-to-noise ratio (CNR) and spatial resolution. High-quality scans can be recorded in 15 min and fast scans down to 3 min are also possible without significant loss of image quality. At scan times well below 3 min, the CNR values decrease significantly and classical image-filtering techniques reach their limitation. A machine-learning approach shows promising results, enabling acquisition of a full tomography in only 6 s. Overall, the transmission X-ray microscopy instrument offers high temporal resolution in absorption and Zernike phase contrast, enabling in situ experiments at the beamline

    Three-dimensional imaging of xylem at cell wall level through near field nano holotomography

    Get PDF
    Abstract Detailed imaging of the three-dimensionally complex architecture of xylary plants is important for studying biological and mechanical functions of woody plants. Apart from common two-dimensional microscopy, X-ray micro-computed tomography has been established as a three-dimensional (3D) imaging method for studying the hydraulic function of wooden plants. However, this X-ray imaging method can barely reach the resolution needed to see the minute structures (e.g. pit membrane). To complement the xylem structure with 3D views at the nanoscale level, X-ray near-field nano-holotomography (NFH) was applied to analyze the wood species Pinus sylvestris and Fagus sylvatica. The demanded small specimens required focused ion beam (FIB) application. The FIB milling, however, influenced the image quality through gallium implantation on the cell-wall surfaces. The measurements indicated that NFH is appropriate for imaging wood at nanometric resolution. With a 26 nm voxel pitch, the structure of the cell-wall surface in Pinus sylvestris could be visualized in genuine detail. In wood of Fagus sylvatica, the structure of a pit pair, including the pit membrane, between two neighboring fibrous cells could be traced tomographically

    Flexible plenoptic X-ray microscopy

    Get PDF
    X-ray computed tomography (CT) is an invaluable technique for generating three-dimensional (3D) images of inert or living specimens. X-ray CT is used in many scientific, industrial, and societal fields. Compared to conventional 2D X-ray imaging, CT requires longer acquisition times because up to several thousand projections are required for reconstructing a single high-resolution 3D volume. Plenoptic imaging—an emerging technology in visible light field photography—highlights the potential of capturing quasi-3D information with a single exposure. Here, we show the first demonstration of a flexible plenoptic microscope operating with hard X-rays; it is used to computationally reconstruct images at different depths along the optical axis. The experimental results are consistent with the expected axial refocusing, precision, and spatial resolution. Thus, this proof-of-concept experiment opens the horizons to quasi-3D X-ray imaging, without sample rotation, with spatial resolution of a few hundred nanometres

    Structural analysis of silk proteins using x–ray and neutron scattering

    No full text
    The silk fibres spun by insects and spiders have intrigued scientists for many years. Their mechanical performance is remarkable when one considers that the fibres are spun under ambient conditions from aqueous protein solutions without requiring many of the harsh processing conditions used in the production of man-made fibres. Yet, despite this interest, very little is known about the initial structure of the precursor proteins prior to spinning. One reason for this lies in the difficulty of handling the native proteins without accidental aggregation. Therefore in this thesis a novel sample preparation protocol for native silk is developed and small angle scattering (SAS) techniques are combined with circular dichroism (CD) and atomic force microscopy (AFM) to examine the structure and morphology of the proteins with different mechanical properties and thus biological function in nature. This work highlights the importance of studying native, functional proteins, at close to in vivo conditions, since clear differences in the structure and interaction of native and reconstituted silks can be attributed to the additional processing which reconstituted silks have undergone in order to be solubilised. Indeed native silk proteins are found to be more inherently non-interacting at quite high protein concentrations than reconstituted silk. Upon dilution, inter-chain interactions can be observed by SAS and CD as the protein is driven from its equilibrium conformation. This interaction and the shear-induced assembly of these proteins are also followed by AFM. Interestingly, native silk proteins from spider and silkworms retain a semiflexible conformation in solution. Indeed by comparing the silks from the major and minor ampullate, flagelliform and cylindriform glands of Nephila edulis with the cocoon silk of Bombyx mori silkworms, important insights are gained into how their flexibility suggests similarities in the local environment of the protein chains thereby dictating the hierarchical structure of silk fibres

    Structural analysis of silk proteins using x–ray and neutron scattering

    No full text
    The silk fibres spun by insects and spiders have intrigued scientists for many years. Their mechanical performance is remarkable when one considers that the fibres are spun under ambient conditions from aqueous protein solutions without requiring many of the harsh processing conditions used in the production of man-made fibres. Yet, despite this interest, very little is known about the initial structure of the precursor proteins prior to spinning. One reason for this lies in the difficulty of handling the native proteins without accidental aggregation. Therefore in this thesis a novel sample preparation protocol for native silk is developed and small angle scattering (SAS) techniques are combined with circular dichroism (CD) and atomic force microscopy (AFM) to examine the structure and morphology of the proteins with different mechanical properties and thus biological function in nature. This work highlights the importance of studying native, functional proteins, at close to in vivo conditions, since clear differences in the structure and interaction of native and reconstituted silks can be attributed to the additional processing which reconstituted silks have undergone in order to be solubilised. Indeed native silk proteins are found to be more inherently non-interacting at quite high protein concentrations than reconstituted silk. Upon dilution, inter-chain interactions can be observed by SAS and CD as the protein is driven from its equilibrium conformation. This interaction and the shear-induced assembly of these proteins are also followed by AFM. Interestingly, native silk proteins from spider and silkworms retain a semiflexible conformation in solution. Indeed by comparing the silks from the major and minor ampullate, flagelliform and cylindriform glands of Nephila edulis with the cocoon silk of Bombyx mori silkworms, important insights are gained into how their flexibility suggests similarities in the local environment of the protein chains thereby dictating the hierarchical structure of silk fibres.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Modified x-ray polymer refractive cross lens with adiabatic contraction and its realization

    No full text
    A refractive x-ray lens with reduced focal length, due to continuous reduction in the designed aperture over the length of the lens, is presented. The lens elements have refractive parabolic sidewalls like geometrical prisms, with a varying cross section over the length of the lens, in accordance with the x-ray propagation law. The focusing effect occurs directly in the lens due to the fact that the initial x-ray beam is directed toward the focal point, and due to the phase retardation caused by the refractive properties of the sidewall surfaces. An array of such adiabatic lens elements with different optical parameters, arranged in a number of rows, represented by polymer microstructures, has been produced using x-ray lithography. Preliminary testing of the lenses has resulted in a focal spot of 67 nm at a photon energy of 18.6 keV
    • …
    corecore