1,694 research outputs found

    350 Micron Observations of Ultraluminous Infrared Galaxies at Intermediate Redshifts

    Get PDF
    We present 350micron observations of 36 ultraluminous infrared galaxies (ULIRGs) at intermediate redshifts (0.089 <= z <= 0.926) using the Submillimeter High Angular Resolution Camera II (SHARC-II) on the Caltech Submillimeter Observatory (CSO). In total, 28 sources are detected at S/N >= 3, providing the first flux measurements longward of 100micron for a statistically significant sample of ULIRGs in the redshift range of 0.1 < z < 1.0. Combining our 350micron flux measurements with the existing IRAS 60 and 100micron data, we fit a single-temperature model to the spectral energy distribution (SED), and thereby estimate dust temperatures and far-IR luminosities. Assuming an emissivity index of beta = 1.5, we find a median dust temperature and far-IR luminosity of Td = 42.8+-7.1K and log(Lfir/Lsolar) = 12.2+-0.5, respectively. The far-IR/radio correlation observed in local star-forming galaxies is found to hold for ULIRGs in the redshift range 0.1 < z < 0.5, suggesting that the dust in these sources is predominantly heated by starbursts. We compare the far-IR luminosities and dust temperatures derived for dusty galaxy samples at low and high redshifts with our sample of ULIRGs at intermediate redshift. A general Lfir-Td relation is observed, albeit with significant scatter, due to differing selection effects and variations in dust mass and grain properties. The relatively high dust temperatures observed for our sample compared to that of high-z submillimeter-selected starbursts with similar far-IR luminosities suggest that the dominant star formation in ULIRGs at moderate redshifts takes place on smaller spatial scales than at higher redshifts.Comment: (24 pages in preprint format, 1 table, 7 figures, accepted for publication in ApJ

    Molecular gas in extreme star-forming environments: the starbursts Arp220 and NGC6240 as case studies

    Full text link
    We report single-dish multi-transition measurements of the 12^CO, HCN, and HCO^+ molecular line emission as well as HNC J=1-0 and HNCO in the two ultraluminous infra-red galaxies Arp220 and NGC6240. Using this new molecular line inventory, in conjunction with existing data in the literature, we compiled the most extensive molecular line data sets to date for such galaxies. The many rotational transitions, with their different excitation requirements, allow the study of the molecular gas over a wide range of different densities and temperatures with significant redundancy, and thus allow good constraints on the properties of the dense gas in these two systems. The mass (~(1-2) x 10^10 Msun) of dense gas (>10^5-6 cm^-3) found accounts for the bulk of their molecular gas mass, and is consistent with most of their IR luminosities powered by intense star bursts while self-regulated by O,B star cluster radiative pressure onto the star-forming dense molecular gas. The highly excited HCN transitions trace a gas phase ~(10-100)x denser than that of the sub-thermally excited HCO^+ lines (for both galaxies). These two phases are consistent with an underlying density-size power law found for Galactic GMCs (but with a steeper exponent), with HCN lines tracing denser and more compact regions than HCO^+. Whether this is true in IR-luminous, star forming galaxies in general remains to be seen, and underlines the need for observations of molecular transitions with high critical densities for a sample of bright (U)LIRGs in the local Universe -- a task for which the HI-FI instrument on board Herschel is ideally suited to do.Comment: 38 pages (preprint ApJ style), 3 figures, accepted for Ap

    SIGAME simulations of the [CII], [OI] and [OIII] line emission from star forming galaxies at z ~ 6

    Get PDF
    Of the almost 40 star forming galaxies at z>~5 (not counting QSOs) observed in [CII] to date, nearly half are either very faint in [CII], or not detected at all, and fall well below expectations based on locally derived relations between star formation rate (SFR) and [CII] luminosity. Combining cosmological zoom simulations of galaxies with SIGAME (SImulator of GAlaxy Millimeter/submillimeter Emission) we have modeled the multi-phased interstellar medium (ISM) and its emission in [CII], [OI] and [OIII], from 30 main sequence galaxies at z~6 with star formation rates ~3-23Msun/yr, stellar masses ~(0.7-8)x10^9Msun, and metallicities ~(0.1-0.4)xZsun. The simulations are able to reproduce the aforementioned [CII]-faintness at z>5, match two of the three existing z>~5 detections of [OIII], and are furthermore roughly consistent with the [OI] and [OIII] luminosity relations with SFR observed for local starburst galaxies. We find that the [CII] emission is dominated by the diffuse ionized gas phase and molecular clouds, which on average contribute ~66% and ~27%, respectively. The molecular gas, which constitutes only ~10% of the total gas mass is thus a more efficient emitter of [CII] than the ionized gas making up ~85% of the total gas mass. A principal component analysis shows that the [CII] luminosity correlates with the star formation activity as well as average metallicity. The low metallicities of our simulations together with their low molecular gas mass fractions can account for their [CII]-faintness, and we suggest these factors may also be responsible for the [CII]-faint normal galaxies observed at these early epochs.Comment: 24 pages, 14 figures. Accepted for publication in the Astrophysical Journa

    Modelling the Molecular Gas in NGC 6240

    Full text link
    We present the first observations of H13^{13}CN(10)(1-0), H13^{13}CO+(10)^+(1-0) and SiO(21)(2-1) in NGC\,6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling, and with additional data from the literature, we simultaneously fit three gas phases and six molecular species to constrain the physical condition of the molecular gas, including mass-luminosity conversion factors. We find 1010M\sim10^{10}M_\odot of dense molecular gas in cold, dense clouds (Tk10T_{\rm k}\sim10\,K, nH2106n_{{\rm H}_2}\sim10^6\,cm3^{-3}) with a volume filling factor <0.002<0.002, embedded in a shock heated molecular medium (Tk2000T_{\rm k}\sim2000\,K, nH2103.6n_{{\rm H}_2}\sim10^{3.6}\,cm3^{-3}), both surrounded by an extended diffuse phase (Tk200T_{\rm k}\sim200\,K, nH2102.5n_{{\rm H}_2}\sim10^{2.5}\,cm3^{-3}). We derive a global αCO=1.51.17.1\alpha_{\rm CO}=1.5^{7.1}_{1.1} with gas masses log10(M/[M])=10.110.010.8\log_{10}\left(M / [M_\odot]\right)=10.1_{10.0}^{10.8}, dominated by the dense gas. We also find αHCN=321389\alpha_{\rm HCN} = 32^{89}_{13}, which traces the cold, dense gas. The [12^{12}C]/[13^{13}C] ratio is only slightly elevated (986523098^{230}_{65}), contrary to the very high [CO]/[13^{13}CO] ratio (300-500) reported in the literature. However, we find very high [HCN]/[H13^{13}CN] and [HCO+^+]/[H13^{13}CO+^+] abundance ratios (300200500)(300^{500}_{200}) which we attribute to isotope fractionation in the cold, dense clouds.Comment: 27 pages, 17 figures, 9 tables. Accepted in Ap

    Interferometric Observations of Powerful CO Emission from the three Submillimeter Galaxies at z=2.30, 2.51 and 3.35

    Full text link
    We report IRAM Plateau de Bure, millimeter interferometry of three z=~2.4 to 3.4, SCUBA deep field galaxies. Our CO line observations confirm the rest-frame UV/optical redshifts, thus more than doubling the number of confirmed, published redshifts of the faint submillimeter population and proving their high-z nature. In all three sources our measurements of the intrinsic gas and dynamical mass are large (1e10 to 1e11 Msun). In at least two cases the data show that the submillimeter sources are part of an interacting system. Together with recent information gathered in the X-ray, optical and radio bands our observations support the interpretation that the submm-population consists of gas rich (gas to dynamical mass ratio ~0.5) and massive, composite starburst/AGN systems, which are undergoing a major burst of star formation and are evolving into m*-galaxies.Comment: only minor modifications to comply with the ApJL edition rule

    Dense Gas at High Redshifts: A Search with the 110m Robert C. Byrd Telescope

    Get PDF
    We have conducted a sensitive search for the redshifted HCN(1−0) line (v_(rest) = 88.6304 GHz) towards three luminous submillimeter galaxies at z ∼ 2.5 − 2.8 using the K-band receiver (17.6-27.1GHz) on the 110m Robert C. Byrd Telescope (also known as the Green Bank Telescope). Aided by gravitational lensing, we place strong upper limits on the intrinsic line luminosity of all three sources (L′_(HCN(1−0)) ≤ 2×10^(10) K kms^(−1) pc^2). We conclude that all four submillimeter galaxies that have been observed in HCN to date are consistent with the tight relation between FIR and HCN luminosity observed in a variety of local star-forming systems, ranging from Galactic dense cores to (ultra)luminous infrared galaxies at z ≤ 0.1
    corecore