2,511 research outputs found

    Eclipsing Binaries in the OGLE Variable Star Catalogs.V. Long-Period Beta Lyrae-type Systems in the Small Magellanic Cloud and the PLC-beta Relation

    Full text link
    Thirty eight long-period (P>10 days), apparently contact binary stars discovered by the OGLE-II project in the SMC appear to be Beta Lyrae-type systems with ellipsoidal variations of the cool components dominating over eclipse effects in the systemic light variations and in the total luminosity. A new period-luminosity- color (PLC) relation has been established for these systems; we call it the PLC-beta relation, to distinguish it from the Cepheid relation. Two versions of the PLC-beta relation - based on the (B-V)0 or (V-I)0 color indices - have been calibrated for 33 systems with (V-I)0>0.25 spanning the orbital period range of 11 to 181 days. The relations can provide maximum-light, absolute-magnitude estimates accurate to epsilon-M_V~0.35 mag. within the approximate range -3<M_V<+1. In terms of their number in the SMC, the long-period Beta Lyrae-type binaries are about 50 times less common than the Cepheids. Nevertheless, their large luminosities coupled with continuous light variations make these binaries very easy to spot in nearby galaxies, so that the PLC-beta relation can offer an auxiliary and entirely independent method of distance determination to nearby stellar systems rich in massive stars. The sample of the long-period Beta Lyrae systems in the SMC analyzed in this paper is currently the best defined and uniform known sequence of such binaries.Comment: submitted for publication in Astronomical Journal; 8 PS figures, 2 table

    Millimetre-VLBI Monitoring of AGN with Sub-milliarcsecond Resolution

    Full text link
    Global millimetre VLBI allows detailed studies of the most central jet regions of AGN with unprecedent spatial resolution of a few 100-1000 Schwartzschild radii to be made. Study of these regions will help to answer the question how the highly relativistic AGN jets are launched and collimated. Since the early 1990s, bright mm-sources have been observed with global 3 mm VLBI. Here we present new images from an ongoing systematic analysis of the available observations. In particular, we focus on the structure and structural evolution of the best observed AGN jets, taking 3C 454.3 as a characteristic example. This core-dominated and highly variable quasar shows a complex morphology with individual jet components accelerating superluminally towards the outer structure. We briefly discuss the X-ray properties of 3C 454.3 and present its radio- to X-ray large-scale brightness distribution.Comment: 4 pages, 4 figures, Proceedings of the 7th EVN Symposium held in Toledo, Spain in October 2004, needs evn2004.cl

    The Low CO Content of the Extremely Metal Poor Galaxy I Zw 18

    Full text link
    We present sensitive molecular line observations of the metal-poor blue compact dwarf I Zw 18 obtained with the IRAM Plateau de Bure interferometer. These data constrain the CO J=1-0 luminosity within our 300 pc (FWHM) beam to be L_CO < 1 \times 10^5 K km s^-1 pc^2 (I_CO < 1 K km s^-1), an order of magnitude lower than previous limits. Although I Zw 18 is starbursting, it has a CO luminosity similar to or less than nearby low-mass irregulars (e.g. NGC 1569, the SMC, and NGC 6822). There is less CO in I Zw 18 relative to its B-band luminosity, HI mass, or star formation rate than in spiral or dwarf starburst galaxies (including the nearby dwarf starburst IC 10). Comparing the star formation rate to our CO upper limit reveals that unless molecular gas forms stars much more efficiently in I Zw 18 than in our own galaxy, it must have a very low CO-to-H_2 ratio, \sim 10^-2 times the Galactic value. We detect 3mm continuum emission, presumably due to thermal dust and free-free emission, towards the radio peak.Comment: 5 pages in emulateapj style, accepted by the Astrophysical Journa

    Preemption in the Rehnquist and Roberts Courts: An Empirical Analysis

    Get PDF
    This article presents an empirical analysis of the Rehnquist Court’s and the Roberts Court’s decisions on the federal (statutory) preemption of state law. In addition to raw outcomes for or against preemption, we examine cases by subject-matter, level of judicial consensus, tort versus regulatory preemption, party constellation, and origin in state or federal court. We present additional data and analysis on the role of state amici and of the U.S. Solicitor General in preemption cases, and we examine individual justices’ voting records. Among our findings, one stands out: over time and especially under the Roberts Court, lawyerly preemption questions have assumed a distinctly ideological flavor. Preemption cases are much more likely to be contested than they were in earlier decades; and in those cases, once-rare judicial bloc voting has become common

    Interferometric Observations of Powerful CO Emission from the three Submillimeter Galaxies at z=2.30, 2.51 and 3.35

    Full text link
    We report IRAM Plateau de Bure, millimeter interferometry of three z=~2.4 to 3.4, SCUBA deep field galaxies. Our CO line observations confirm the rest-frame UV/optical redshifts, thus more than doubling the number of confirmed, published redshifts of the faint submillimeter population and proving their high-z nature. In all three sources our measurements of the intrinsic gas and dynamical mass are large (1e10 to 1e11 Msun). In at least two cases the data show that the submillimeter sources are part of an interacting system. Together with recent information gathered in the X-ray, optical and radio bands our observations support the interpretation that the submm-population consists of gas rich (gas to dynamical mass ratio ~0.5) and massive, composite starburst/AGN systems, which are undergoing a major burst of star formation and are evolving into m*-galaxies.Comment: only minor modifications to comply with the ApJL edition rule

    Lens magnification by CL0024+1654 in the U and R band

    Get PDF
    [ABRIDGED] We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source depletion due to lens magnification in the R band. Within a radius of 0.54Mpc/h, a total projected mass of (8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass- to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of CL0024+1654 in order to estimate contamination of the background source counts from cluster galaxies. Three different magnification-based reconstruction methods are employed using both local and non-local techniques. We have modified the standard single power-law slope number count theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of different cluster models to the observed number counts, we find that the cluster is best described either by a NFW model with scale radius r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law profile with slope xi=0.61+/-0.11, central surface mass density kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW model predicts that the cumulative projected mass contained within a radius R scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have exploited the fact that flux magnification effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up to U_AB<=26.6 and a change of slope, reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95% confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more robust U band break analysis and contamination estimates, plus new plot

    Chemically Distinct Nuclei and Outflowing Shocked Molecular Gas in Arp 220

    Get PDF
    We present the results of interferometric spectral line observations of Arp 220 at 3.5mm and 1.2mm from the Plateau de Bure Interferometer (PdBI), imaging the two nuclear disks in H13^{13}CN(1−0)(1 - 0) and (3−2)(3 - 2), H13^{13}CO+(1−0)^+(1 - 0) and (3−2)(3 - 2), and HN13^{13}C(3−2)(3 - 2) as well as SiO(2−1)(2 - 1) and (6−5)(6 - 5), HC15^{15}N(3−2)(3 - 2), and SO(66−55)(6_6 - 5_5). The gas traced by SiO(6−5)(6 - 5) has a complex and extended kinematic signature including a prominent P Cygni profile, almost identical to previous observations of HCO+(3−2)^+(3 - 2). Spatial offsets 0.1â€Čâ€Č0.1'' north and south of the continuum centre in the emission and absorption of the SiO(6−5)(6 - 5) P Cygni profile in the western nucleus (WN) imply a bipolar outflow, delineating the northern and southern edges of its disk and suggesting a disk radius of ∌40\sim40 pc, consistent with that found by ALMA observations of Arp 220. We address the blending of SiO(6−5)(6 - 5) and H13^{13}CO+(3−2)^+(3 - 2) by considering two limiting cases with regards to the H13^{13}CO+^+ emission throughout our analysis. Large velocity gradient (LVG) modelling is used to constrain the physical conditions of the gas and to infer abundance ratios in the two nuclei. Our most conservative lower limit on the [H13^{13}CN]/[H13^{13}CO+^+] abundance ratio is 11 in the WN, cf. 0.10 in the eastern nucleus (EN). Comparing these ratios to the literature we argue on chemical grounds for an energetically significant AGN in the WN driving either X-ray or shock chemistry, and a dominant starburst in the EN.Comment: 28 pages, 17 figures, accepted to Ap

    Low and intermediate-mass close binary evolution and the initial - final mass relation

    Full text link
    Using Eggleton's stellar evolution code, we carry out 150 runs of Pop I binary evolution calculations, with the initial primary mass between 1 and 8 solar masses the initial mass ratio between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle, or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass of the primary, the initial mass ratio, and the radius of the primary at the onset of RLOF. We also find that a carbon-oxygen white dwarf with mass as low as 0.33 solar masses may be formed if the primary's initial mass is around 2.5 solar masses.Comment: 7 pages for main text, 11 pages for appendix (table A1), 12 figure
    • 

    corecore