23 research outputs found

    Using Fixed and Portable Half-Duplex Pit Tag Antennas to Evaluate Fish Movement in a Stream Network: A Case Study in the Upper Big Hole River Basin

    Get PDF
    Passive integrated transponder (PIT) technology is commonly used to evaluate the movement, habitat use, and dynamics of stream fish populations and assemblages. One distinct advantage of this technology is the ability to collect information over the life span of individually identifiable fish using passive monitoring sensors. In the upper Big Hole River basin, we used a combination of fixed and portable half-duplex PIT tag antennas to evaluate salmonid movement and habitat use at multiple spatial and temporal scales. In the summer and autumn of 2009, we used a network of 15 fixed stations and a series of portable antenna surveys to relocate PIT-tagged fish in the mainstem Big Hole River and tributaries within the valley-bottom. We used multiple antenna designs to account for the considerable range in stream size (~ 2-60 m wetted width). We directly evaluated the detection efficiency of our portable antennas in five tributaries and one reach of the mainstem. Overall, we conservatively estimated a 54 percent (n = 6, SD = 0.13) detection efficiency for one-pass surveys, with detection efficiencies varying among fish species and, to a lesser extent, among sites. Detection efficiency estimates for shed tags were consistent among sites and averaged 93 percent (n = 4, SD = 0.10). Challenges, successes, and failures in implementing these antennas will be discussed. Overall, using a combination of fixed and portable antennas proved a useful and efficient approach to evaluating fish movement in this stream network

    Trends in Characteristics of Yellowstone Lake Cutthroat Trout, Associated Factors, and Evidence of a Population Shift

    Get PDF
    Comprehensive time-series data for Yellowstone cutthroat trout (Oncorhynchus clarkia bouvieri; YCT) based on samples taken between 1977 and 2007 from the spawning run (spring; n = 29 yrs) of a tributary (Clear Creek) of Yellowstone Lake or caught in gill nets set (fall; n = 30 years) at established locations in the lake were examined to identify (1) associations between population characteristics within and between capture methods, as well as temporal trends in those characteristics, (2) evidence of informative shifts in population characteristics, and (3) factors that may have importantly affected the dynamics of the lacustrine-adfluvial YCT population of the tributary. Temporal increases in mean TL of YCT in the spawning run and of prespawners, i.e., YCT whose gonads indicated the fish would have spawned the next year, in the gillnet catch and concurrent declines in run size and prespawner catch were suggestive of an effect of YCT population density on the somatic growth of the fish. Similarly, a concurrent increase in mean TL of gillnetted YCT 100-199 mm long was indicated by the polynomial regression results, which also suggested statistical change points in the temporal trends for each of those variables. Contrasting those trends was that for mean TL of gillnetted YCT 200-299 mm long, whose general decline during the past two decades was attributed to predation by nonnative lake trout (Salvelinus namaycush). Collectively, these trends provided evidence of a YCT population shift. Correlation results indicated YCT in the spawning run could not be unequivocally assigned to any particular lake region. Multiple regression analyses showed that Clear Creek run size was strongly affected by parental run size 5 yrs earlier and a measure of climate 5 yrs earlier

    Effects of CarbonDioxide on Rainbow Trout Larvae: Application for Invasive Fish Eradication

    Get PDF
    Currently, efforts are underway to eradicate invasive fish species that threaten the ecological integrity of aquatic ecosystems. Several studies have examined the effects of anesthetizing fish for easier handling, surgical procedures, tagging and management. Carbon Dioxide (CO2) is an approved and efficient anesthetic for adult fish in medicine and aquaculture and is favorable due to lack of residues, zero withdrawal period and does not need to be registered as its classification is generally regarded as safe (GRAS). Carbon dioxide has also shown to have lethal effects on other life history stages of fish. In this study, various early life stages of Rainbow trout (Oncorhynchus mykiss) larvae were exposed to CO2 in the form of dry ice pellets to determine the critical period of sensitivity for mortality in a model salmonid species. Studies were conducted in aluminum tanks (n = 3 tanks per treatment, with three chambers in each tank with 40 larvae per chamber) with 68 liters of filtered creek water (dissolved CO2 = 4 mg/l, dissolved O2 = 8.125 mg/l, pH = 7.78, temperature = 12.9°C, conductivity = -55 mV, Total alkalinity as CaCO3 = 160 mg/l). Larvae exposed at post hatch day 10 had increased susceptibility to CO2, when compared with earlier embryonic stages. The results of the experiment indicate that early rainbow trout life history stages are susceptible to CO2 but only at late embryonic stages and may have implications for systematically eradicating invasive salmonids

    The Effects of Ultraviolet Light on Rainbow Trout Embryos

    Get PDF
    There currently exists a need to develop new approaches to control aquatic invasive and nuisance species. The effects of light radiation such as ultra-violet wavelengths of light have shown negative effects, such as increased embryo mortality in early embryonic salmonid larvae. This study explores the use of light radiation for eradication of invasive fish. Experiments were conducted to evaluate dose and critical period of sensitivity for mortality of rainbow trout (Oncorhynchus mykiss) embryos after exposure to visual and ultra-violet light radiation. Endpoints recorded include exposure intensity, effective distance from source, duration of exposure, malformations and mortality. Introduced light may be an effective and feasible eradication technique of early life history stages of fish and invertebrate invasive species in situ, as light can be implemented and removed with minimal environmental impact

    A Conceptual Model for Predicting Areas with High Potential for Lake Trout Spawning Habitat in Yellowstone Lake

    Get PDF
    The presence of non-native lake trout (Salvelinus namaycush) has become a serious threat to native salmonid populations in many lakes throughout the West. Costly and time consuming suppression efforts have been undertaken by agencies in several of these systems with concern regarding their efficacy expressed by fisheries managers. Frequently, mature lake trout are interspersed with the native fishes, hindering removal efforts because of bycatch of fishes meant to be the beneficiary of suppression efforts. One method of improving suppression efforts that could reduce negative impacts on other species is to target areas where sexually mature lake trout congregate for spawning activities. Using theory that water movements within lakes influence habitat formation, parameters describing lake trout spawning habitat in published literature, and the capability of a GIS to mesh spatially-explicit geographical datasets, a conceptual lake trout spawning habitat model was developed for Yellowstone Lake. Important inputs to this model include detailed bathymetry of Yellowstone Lake, a sedimentation model that predicts erosion and deposition of particles within lake systems, and data on primary wind direction over the lake. The model predicts that 4.4 percent of the surface area of Yellowstone Lake has excellent potential, 8.9 percent has some potential, and 86.7 percent has no potential to contain lake trout spawning habitat. Additional data layers can be easily incorporated as new information becomes available on lake trout requirements for successful spawning. This model can be used to identify suitable spawning areas for monitoring and control, and has potential to be applied on other lakes experiencing lake trout invasion

    Effects of Topology, Number and Location of Nodes, Population Density, and Stocking Duration on Hybrids’ Dispersal Across a Network

    Get PDF
    Hybridization between native cutthroat trout (Oncorhynchus clarki sp.) and introduced rainbow trout (O. mykiss) has been a topic of fisheries research for decades in the northern Rocky Mountains, USA. Several studies suggest that the likelihood of introgression at any location in a stream network is influenced by the distance between that location and the source of non-native genes, e.g., stocking locations or areas dominated by non-native or introgressed fish. The relationship between “distance to non-native source” and hybridization rates, however, is rarely quantified. Studies that attempt to quantify the relationship generally ignore the potential influence of stream network topology on gene movement. We have developed and applied an agent-based model that tracks the lineage and breeding location of individual fish over time, this simulating the movement of non-native genes among spawning locations within a stream network. The model considered both distances between spawning sites and network topology in determining non-natal spawning site selection by stocked and straying fish. Model results suggest that stream network topology has a strong influence on the relationship between “stream distance from genetic source” and “degree of hybridization” at spawning locations. However, the importance of topology varies depending on underlying model assumptions about, stocking duration, number and location of spawning grounds, population density, and spawning site fidelity, i.e., “straying rates,” within the river system

    Climate Change, Forests, Fire, Water, and Fish: Building resilient landscapes, streams, and managers

    Get PDF
    Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their calculus. The biophysical template of forest and stream ecosystems determines much of their response to fire. This report describes the framework of how fire and climate change work together to affect forest and fish communities. Learning how to adapt will come from testing, probing, and pushing that framework and then proposing new ideas. The western U.S. defies generalizations, and much learning must necessarily be local in implication. This report serves as a scaffold for that learning. It comprises three primary chapters on physical processes, biological interactions, and management decisions, accompanied by a special section with separately authored papers addressing interactions of fish populations with wildfire. Any one of these documents could stand on its own. Taken together, they serve as a useful reference with varying levels of detail for land managers and resource specialists. Readers looking for an executive summary are directed to the sections titled “Introduction” and “Next Steps.
    corecore