3 research outputs found
p63 the guardian of human reproduction
p63 is a transcriptional factor implicated in cancer and development. The presence in TP63 gene of alternative promoters allows expression of one isoform containing the N-terminal transactivation domain (TA isoform) and one N-terminal truncated isoform (ΔN isoform). Complete ablation of all p63 isoforms produced mice with fatal developmental abnormalities, including lack of epidermal barrier, limbs and other epidermal appendages. Specific TAp63-null mice, although they developed normally, failed to undergo in DNA damage-induced apoptosis during primordial follicle meiotic arrest, suggesting a p63 involvement in maternal reproduction. Recent findings have elucidated the role in DNA damage response of a novel Hominidae p63 isoform, GTAp63, specifically expressed in human spermatic precursors. Thus, these findings suggest a unique strategy of p63 gene, to evolve in order to preserve the species as a guardian of reproduction. Elucidation of the biological basis of p63 function in reproduction may provide novel approaches to the control of human fertility
p63 the guardian of human reproduction
p63 is a transcriptional factor implicated in cancer and development. The presence in TP63 gene of alternative promoters allows expression of one isoform containing the N-terminal transactivation domain (TA isoform) and one N-terminal truncated isoform (ΔN isoform). Complete ablation of all p63 isoforms produced mice with fatal developmental abnormalities, including lack of epidermal barrier, limbs and other epidermal appendages. Specific TAp63-null mice, although they developed normally, failed to undergo in DNA damage-induced apoptosis during primordial follicle meiotic arrest, suggesting a p63 involvement in maternal reproduction. Recent findings have elucidated the role in DNA damage response of a novel Hominidae p63 isoform, GTAp63, specifically expressed in human spermatic precursors. Thus, these findings suggest a unique strategy of p63 gene, to evolve in order to preserve the species as a guardian of reproduction. Elucidation of the biological basis of p63 function in reproduction may provide novel approaches to the control of human fertility
p73 Regulates Primary Cortical Neuron Metabolism: a Global Metabolic Profile
The transcription factor p73 has been demonstrated to play a significant role in survival and differentiation of neuronal stem cells. In this report, by employing comprehensive metabolic profile and mitochondrial bioenergetics analysis, we have explored the metabolic alterations in cortical neurons isolated from p73 N-terminal isoform specific knockout animals. We found that loss of the TAp73 or ΔNp73 triggers selective biochemical changes. In particular, p73 isoforms regulate sphingolipid and phospholipid biochemical pathway signaling. Indeed, sphinganine and sphingosine levels were reduced in p73-depleted cortical neurons, and decreased levels of several membrane phospholipids were also observed. Moreover, in line with the complexity associated with p73 functions, loss of the TAp73 seems to increase glycolysis, whereas on the contrary, loss of ΔNp73 isoform reduces glucose metabolism, indicating an isoform-specific differential effect on glycolysis. These changes in glycolytic flux were not reflected by parallel alterations of mitochondrial respiration, as only a slight increase of mitochondrial maximal respiration was observed in p73-depleted cortical neurons. Overall, our findings reinforce the key role of p73 in regulating cellular metabolism and point out that p73 exerts its functions in neuronal biology at least partially through the regulation of metabolic pathways