98 research outputs found

    Compact RF accelerators for nuclear waste characterization

    Get PDF
    Part of the management of radioactive waste produced by industrial, research or medical processes passes through their characterization with nuclear techniques using neutron sources (typically a D-T tube produces 106 n/pulse, 10 us 100 Hz). On the basis of what has been developed by INFN for other applications (IFMIF, ESS, BNCT...) it is possible to build a much more intense neutron source (109 n/pulse), based on a relatively compact 5 MeV RF linear accelerator and a thick beryllium target, exploiting 9Be(p,n)9B. This talk will recall what was discussed between SOGIN and INFN in recent years (MUNES project) in the light of the most recent results obtained by INFN in the field of linear accelerators

    NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities

    Get PDF
    Recent advancements in cell engineering have succeeded in manipulating cell identity with the targeted overexpression of specific cell fate determining transcription factors in a process named transcriptional programming. Neurogenin2 (NGN2) is sufficient to instruct pluripotent stem cells (PSCs) to acquire a neuronal identity when delivered with an integrating system, which arises some safety concerns for clinical applications. A non-integrating system based on modified messenger RNA (mmRNA) delivery method, represents a valuable alternative to lentiviral-based approaches. The ability of NGN2 mmRNA to instruct PSC fate change has not been thoroughly investigated yet. Here we aimed at understanding whether the use of an NGN2 mmRNA-based approach combined with a miniaturized system, which allows a higher transfection efficiency in a cost-effective system, is able to drive human induced PSCs (hiPSCs) toward the neuronal lineage. We show that NGN2 mRNA alone is able to induce cell fate conversion. Surprisingly, the outcome cell population accounts for multiple phenotypes along the neural development trajectory. We found that this mixed population is mainly constituted by neural stem cells (45% \ub1 18 PAX6 positive cells) and neurons (38% \ub1 8 \u3b2IIITUBULIN positive cells) only when NGN2 is delivered as mmRNA. On the other hand, when the delivery system is lentiviral-based, both providing a constant expression of NGN2 or only a transient pulse, the outcome differentiated population is formed by a clear majority of neurons (88% \ub1 1 \u3b2IIITUBULIN positive cells). Altogether, our data confirm the ability of NGN2 to induce neuralization in hiPSCs and opens a new point of view in respect to the delivery system method when it comes to transcriptional programming applications

    CARACTERIZAÇÃO DE FAMÍLIAS ACOLHEDORAS DE BEBÊS NA CIDADE DE CASCAVEL/PR

    Get PDF
    O acolhimento familiar tem por objetivo garantir a proteção da criança e do adolescente que se encontram em situações de risco e vulnerabilidade social, surgindo como uma medida alternativa ao acolhimento institucional – creches e abrigos. Tal medida alternativa busca reiterar o convívio familiar de forma digna, ainda mais quando refere-se a bebês, pois esses se encontram em uma fase na qual é necessário maior amor, atenção e afeto para o pleno desenvolvimento e crescimento. O presente trabalho busca, através de estudo de caso e pesquisa de campo, demonstrar quais são as principais características, peculiaridades e motivações das famílias que acolhem bebês de zero a dois anos de idade na cidade de Cascavel no estado do Paraná, a fim de levar a conhecimento nacional o perfil necessário para o acolhimento de bebês

    Antinociceptive effect of Nephelium lappaceum L. fruit peel and the participation of nitric oxide, opioid receptors, and ATP-sensitive potassium channels

    Get PDF
    Introduction:Nephelium lappaceum L. (Sapindaceae) is a plant known as rambutan. It is used for various purposes in traditional medicine.Objective: We aimed to evaluate the antinociceptive effects of the ethanol extract of the fruit peel of N. lappaceum (EENL), the mechanisms involved in these effects, and the acute toxicity in zebrafish.Methods: We performed chromatography coupled to mass spectrometry, acute toxicity assay in zebrafish, and evaluation in mice submitted to models of nociception and locomotor activity.Results: We identified (epi)-catechin, procyanidin B, and ellagic acid and its derivatives in EENL. We did not find any toxicity in zebrafish embryos incubated with EENL. The locomotor activity of mice submitted to oral pretreatment with EENL was not changed, but it reduced the abdominal constrictions induced by acetic acid, the licking/biting time in both the first and second phase of formalin testing and capsaicin testing, and carrageenan-induced paw mechanical allodynia. Oral pretreatment with EENL increased latency time in the hot plate test. This antinociceptive effect was significantly reversed by naloxone, L-arginine, and glibenclamide respectively showing the participation of opioid receptors, nitric oxide, and KATP channels as mediators of EENL-induced antinociception.Conclusion: EENL causes antinociception with the participation of opioid receptors, nitric oxide, and KATP channels, and is not toxic to zebrafish

    Clinical features and natural history of the first 2073 suspected COVID-19 cases in the Corona São Caetano primary care programme: a prospective cohort study.

    Get PDF
    BACKGROUND: Despite most cases not requiring hospital care, there are limited community-based clinical data on COVID-19. METHODS: The Corona São Caetano programme is a primary care initiative providing care to all residents with COVID-19 in São Caetano do Sul, Brazil. It was designed to capture standardised clinical data on community COVID-19 cases. After triage of potentially severe cases, consecutive patients presenting to a multimedia screening platform between 13 April and 13 May 2020 were tested at home with SARS-CoV-2 reverse transcriptase (RT) PCR; positive patients were followed up for 14 days with phone calls every 2 days. RT-PCR-negative patients were offered additional SARS-CoV-2 serology testing to establish their infection status. We describe the clinical, virological and natural history features of this prospective population-based cohort. FINDINGS: Of 2073 suspected COVID-19 cases, 1583 (76.4%) were tested by RT-PCR, of whom 444 (28.0%, 95% CI 25.9 to 30.3) were positive; 604/1136 (53%) RT-PCR-negative patients underwent serology, of whom 52 (8.6%) tested SARS-CoV-2 seropositive. The most common symptoms of confirmed COVID-19 were cough, fatigue, myalgia and headache; whereas self-reported fever (OR 3.0, 95% CI 2.4 to 3.9), anosmia (OR 3.3, 95% CI 2.6 to 4.4) and ageusia (OR 2.9, 95% CI 2.3 to 3.8) were most strongly associated with a positive COVID-19 diagnosis by RT-PCR or serology. RT-PCR cycle thresholds were lower in men, older patients, those with fever and arthralgia and closer to symptom onset. The rates of hospitalisation and death among 444 RT-PCR-positive cases were 6.7% and 0.7%, respectively, with older age and obesity more frequent in the hospitalised group. CONCLUSION: COVID-19 presents in a similar way to other mild community-acquired respiratory diseases, but the presence of fever, anosmia and ageusia can assist the specific diagnosis. Most patients recovered without requiring hospitalisation with a low fatality rate compared with other hospital-based studies

    Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses

    Get PDF
    Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission
    corecore