146 research outputs found
Phase 1 of the automated array assembly task of the low cost silicon solar array project
The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals
Bioinformatics advances in saliva diagnostics
There is a need recognized by the National Institute of Dental & Craniofacial Research and the National Cancer Institute to advance
basic, translational and clinical saliva research. The goal of the Salivaomics Knowledge Base (SKB) is to create a data management system and web resource constructed to support human salivaomics research. To maximize the utility of the SKB for retrieval,
integration and analysis of data, we have developed the Saliva Ontology and SDxMart. This article reviews the informatics advances in saliva diagnostics made possible by the Saliva Ontology and SDxMart
The absolute motion of the peculiar cluster NGC6791
We present improved values of the three components of the absolute space
velocity of the open cluster NGC6791. One HST ACS/WFC field with two-epoch
observations provides astrometric measurements of objects in a field containing
the cluster center. Identification of 60 background galaxies with sharp nuclei
allows us to determine an absolute reference point, and measure the absolute
proper motion of the cluster. We find (mu_alpha cos(delta), mu_delta)_J2000.0 =
(-0.57+/-0.13, -2.45+/-0.12)mas/yr, and adopt V_rad = -47.1+/-0.7km/s from the
average of the published values. Assuming a Galactic potential, we calculate
the Galactic orbit of the cluster for various assumed distances, and briefly
discuss the implications on the nature and the origin of this peculiar cluster.Comment: 5 pages, 3 figures, 3 tables. Accepted for publication in A&A
Letters, on October 18th 200
Fundamental stellar parameters of zeta Pup and gamma^2 Vel from HIPPARCOS data
We report parallax measurements by the HIPPARCOS satellite of zeta Puppis and
gamma^2 Velorum. The distance of zeta Pup is d=429 (+120/ -77) pc, in agreement
with the commonly adopted value to Vela OB2. However, a significantly smaller
distance is found for the gamma^2 Vel system: d=258 (+41/-31) pc. The total
mass of gamma^2 Vel derived from its parallax, the angular size of the
semi-major axis as measured with intensity interferometry, and the period is
M(WR+O)=29.5 (+/-15.9) Msun. This result favors the orbital solution of Pike et
al. (1983) over that of Moffat et al. (1986). The stellar parameters for the O
star companion derived from line blanketed non-LTE atmosphere models are:
Teff=34000 (+/-1500) K, log L/Lsun=5.3 (+/-0.15) from which an evolutionary
mass of M=29 (+/-4) Msun and an age of 4.0 (+0.8/-0.5) Myr is obtained from
single star evolutionary models. With non-LTE model calculations including He
and C we derive a luminosity log L/Lsun~4.7 (+/-0.2) for the WR star. The
mass-luminosity relation of hydrogen-free WR stars implies a mass of M(WR)~5
(+/-1.5) Msun. From our data we favor an age of ~10 Myr for the bulk of the
Vela OB2 stars. Evolutionary scenarios for zeta Pup and gamma^2 Vel are
discussed in the light of our results.Comment: Submitted to ApJ Letters (misprints corrected
Requirements for the formal representation of pathophysiology mechanisms by clinicians
Knowledge of multiscale mechanisms in pathophysiology is the bedrock of clinical practice. If quantitative methods, predicting patient-specific behaviour of these pathophysiology mechanisms, are to be brought to bear on clinical decision-making, the Human Physiome community and Clinical community must share a common computational blueprint for pathophysiology mechanisms. A number of obstacles stand in the way of this sharing—not least the technical and operational challenges that must be overcome to ensure that (i) the explicit biological meanings of the Physiome's quantitative methods to represent mechanisms are open to articulation, verification and study by clinicians, and that (ii) clinicians are given the tools and training to explicitly express disease manifestations in direct contribution to modelling. To this end, the Physiome and Clinical communities must co-develop a common computational toolkit, based on this blueprint, to bridge the representation of knowledge of pathophysiology mechanisms (a) that is implicitly depicted in electronic health records and the literature, with (b) that found in mathematical models explicitly describing mechanisms. In particular, this paper makes use of a step-wise description of a specific disease mechanism as a means to elicit the requirements of representing pathophysiological meaning explicitly. The computational blueprint developed from these requirements addresses the Clinical community goals to (i) organize and manage healthcare resources in terms of relevant disease-related knowledge of mechanisms and (ii) train the next generation of physicians in the application of quantitative methods relevant to their research and practice
Structuring an event ontology for disease outbreak detection
<p>Abstract</p> <p>Background</p> <p>This paper describes the design of an event ontology being developed for application in the machine understanding of infectious disease-related events reported in natural language text. This event ontology is designed to support timely detection of disease outbreaks and rapid judgment of their alerting status by 1) bridging a gap between layman's language used in disease outbreak reports and public health experts' deep knowledge, and 2) making multi-lingual information available.</p> <p>Construction and content</p> <p>This event ontology integrates a model of experts' knowledge for disease surveillance, and at the same time sets of linguistic expressions which denote disease-related events, and formal definitions of events. In this ontology, rather general event classes, which are suitable for application to language-oriented tasks such as recognition of event expressions, are placed on the upper-level, and more specific events of the experts' interest are in the lower level. Each class is related to other classes which represent participants of events, and linked with multi-lingual synonym sets and axioms.</p> <p>Conclusions</p> <p>We consider that the design of the event ontology and the methodology introduced in this paper are applicable to other domains which require integration of natural language information and machine support for experts to assess them. The first version of the ontology, with about 40 concepts, will be available in March 2008.</p
DNA resection in eukaryotes: deciding how to fix the break
DNA double-strand breaks are repaired by different mechanisms, including homologous
recombination and nonhomologous end-joining. DNA-end resection, the first step in
recombination, is a key step that contributes to the choice of DSB repair. Resection, an
evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint
activation and is critical for survival. Failure to regulate and execute this process results in
defective recombination and can contribute to human disease. Here, I review recent findings on
the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the
regulatory strategies that control it, and highlight the consequences of both its impairment and its
deregulation
Adding a Little Reality to Building Ontologies for Biology
BACKGROUND: Many areas of biology are open to mathematical and computational modelling. The application of discrete, logical formalisms defines the field of biomedical ontologies. Ontologies have been put to many uses in bioinformatics. The most widespread is for description of entities about which data have been collected, allowing integration and analysis across multiple resources. There are now over 60 ontologies in active use, increasingly developed as large, international collaborations. There are, however, many opinions on how ontologies should be authored; that is, what is appropriate for representation. Recently, a common opinion has been the "realist" approach that places restrictions upon the style of modelling considered to be appropriate. METHODOLOGY/PRINCIPAL FINDINGS: Here, we use a number of case studies for describing the results of biological experiments. We investigate the ways in which these could be represented using both realist and non-realist approaches; we consider the limitations and advantages of each of these models. CONCLUSIONS/SIGNIFICANCE: From our analysis, we conclude that while realist principles may enable straight-forward modelling for some topics, there are crucial aspects of science and the phenomena it studies that do not fit into this approach; realism appears to be over-simplistic which, perversely, results in overly complex ontological models. We suggest that it is impossible to avoid compromise in modelling ontology; a clearer understanding of these compromises will better enable appropriate modelling, fulfilling the many needs for discrete mathematical models within computational biology
The RICORDO approach to semantic interoperability for biomedical data and models: strategy, standards and solutions.
BACKGROUND: The practice and research of medicine generates considerable quantities of data and model resources (DMRs). Although in principle biomedical resources are re-usable, in practice few can currently be shared. In particular, the clinical communities in physiology and pharmacology research, as well as medical education, (i.e. PPME communities) are facing considerable operational and technical obstacles in sharing data and models. FINDINGS: We outline the efforts of the PPME communities to achieve automated semantic interoperability for clinical resource documentation in collaboration with the RICORDO project. Current community practices in resource documentation and knowledge management are overviewed. Furthermore, requirements and improvements sought by the PPME communities to current documentation practices are discussed. The RICORDO plan and effort in creating a representational framework and associated open software toolkit for the automated management of PPME metadata resources is also described. CONCLUSIONS: RICORDO is providing the PPME community with tools to effect, share and reason over clinical resource annotations. This work is contributing to the semantic interoperability of DMRs through ontology-based annotation by (i) supporting more effective navigation and re-use of clinical DMRs, as well as (ii) sustaining interoperability operations based on the criterion of biological similarity. Operations facilitated by RICORDO will range from automated dataset matching to model merging and managing complex simulation workflows. In effect, RICORDO is contributing to community standards for resource sharing and interoperability.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
SNAP and SPAN: Towards dynamic spatial ontology
We propose a modular ontology of the dynamic features of reality. This amounts, on the one hand, to a purely spatial ontology supporting snapshot views of the world at successive instants of time and, on the other hand, to a purely spatiotemporal ontology of change and process. We argue that dynamic spatial ontology must combine these two distinct types of inventory of the entities and relationships in reality, and we provide characterizations of spatiotemporal reasoning in the light of the interconnections between them
- …