10,547 research outputs found

    Fractionalization of minimal excitations in integer quantum Hall edge channels

    Full text link
    A theoretical study of the single electron coherence properties of Lorentzian and rectangular pulses is presented. By combining bosonization and the Floquet scattering approach, the effect of interactions on a periodic source of voltage pulses is computed exactly. When such excitations are injected into one of the channels of a system of two copropagating quantum Hall edge channels, they fractionalize into pulses whose charge and shape reflects the properties of interactions. We show that the dependence of fractionalization induced electron/hole pair production in the pulses amplitude contains clear signatures of the fractionalization of the individual excitations. We propose an experimental setup combining a source of Lorentzian pulses and an Hanbury Brown and Twiss interferometer to measure interaction induced electron/hole pair production and more generally to reconstruct single electron coherence of these excitations before and after their fractionalization.Comment: 18 pages, 10 figures, 1 tabl

    Magnetic and thermodynamic properties of Sr_{2}LaFe_{3}O_{9}

    Full text link
    Using a Dirac-Heisenberg Hamiltonian with biquadratic exchange interactions, we study the effect of iron disproportionation on the magnetic ordering, and describe the first-order magnetic transition occurring in the perovskite Sr_{2}LaFe_{3}O_{9}. Upon fitting the experimental data, we give an estimate of the exchange integrals for the antiferromagntic and ferromagnetic interactions, in agreement with previous works on kindered compounds. Spin-wave theory yields a magnon spectrum with a gapless antiferromagnetic mode together with two gapped ferromagnetic ones.Comment: 8 pages of RevTex, 5 figures (available upon request), submitted to J. Mag. Mag. Ma

    Cosmic-ray propagation properties for an origin in SNRs

    Full text link
    We have studied the impact of cosmic-ray acceleration in SNR on the spectra of cosmic-ray nuclei in the Galaxy using a series expansion of the propagation equation, which allows us to use analytical solutions for part of the problem and an efficient numerical treatment of the remaining equations and thus accurately describes the cosmic-ray propagation on small scales around their sources in three spatial dimensions and time. We found strong variations of the cosmic-ray nuclei flux by typically 20% with occasional spikes of much higher amplitude, but only minor changes in the spectral distribution. The locally measured spectra of primary cosmic rays fit well into the obtained range of possible spectra. We further showed that the spectra of the secondary element Boron show almost no variations, so that the above findings also imply significant fluctuations of the Boron-to-Carbon ratio. Therefore the commonly used method of determining CR propagation parameters by fitting secondary-to-primary ratios appears flawed on account of the variations that these ratios would show throughout the Galaxy.Comment: Accepted for publication in Ap

    Micro-Raman Spectra of YBaCuO Superconductors

    Get PDF
    A systematic study of the Raman spectra of Y-Ba-Cu-O superconducting materials under different experimental conditions clarifies the controversial results given in the literature. Under the determined conditions and thanks to the micro-Raman technique, reproducible polarized Raman spectra can be obtained and a coherent assignment can be suggested for YBa2Cu307and EuBa2Cu307.For YBa2Cu3(OjF);, the introduction of fluorine atoms was found to be localized in pyramidal CuO units rather than in CuO chains

    Electron quantum optics : partitioning electrons one by one

    Full text link
    We have realized a quantum optics like Hanbury Brown and Twiss (HBT) experiment by partitioning, on an electronic beam-splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron/hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave-packets.Comment: 5 pages, 4 figure

    Surface effects on the orbital order in the single layered manganite La0.5Sr1.5MnO4

    Full text link
    We report the first observation of `orbital truncation rods' -- the scattering arising from the termination of bulk orbital order at the surface of a crystal. The x-ray measurements, performed on a cleaved, single-layered perovskite, La0.5Sr1.5MnO4, reveal that while the crystallographic surface is atomically smooth, the orbital `surface' is much rougher, with an r.m.s. deviation from the average `surface' of ~0.7nm. The temperature dependence of this scattering shows evidence of a surface-induced second order transition.Comment: 13 pages, 4 figure

    Derivation of the Zakharov equations

    Get PDF
    This paper continues the study of the validity of the Zakharov model describing Langmuir turbulence. We give an existence theorem for a class of singular quasilinear equations. This theorem is valid for well-prepared initial data. We apply this result to the Euler-Maxwell equations describing laser-plasma interactions, to obtain, in a high-frequency limit, an asymptotic estimate that describes solutions of the Euler-Maxwell equations in terms of WKB approximate solutions which leading terms are solutions of the Zakharov equations. Because of transparency properties of the Euler-Maxwell equations, this study is led in a supercritical (highly nonlinear) regime. In such a regime, resonances between plasma waves, electromagnetric waves and acoustic waves could create instabilities in small time. The key of this work is the control of these resonances. The proof involves the techniques of geometric optics of Joly, M\'etivier and Rauch, recent results of Lannes on norms of pseudodifferential operators, and a semiclassical, paradifferential calculus

    The Gamma-Ray Blazar Content of the Northern Sky

    Full text link
    Using survey data, we have re-evaluated the correlation of flat spectrum radio sources with EGRET sources in the Northern sky. A likelihood analysis incorporating the radio and X-ray properties and the Gamma-ray source localization is used to gauge the reliability of associations and to search for counterparts of previously unidentified EGRET sources. Above |b|=10deg, where the classification is complete, we find that 70% of the Northern EGRET sources have counterparts similar to the bright EGRET blazars. For several of these we identify known blazar counterparts more likely than the earlier proposed 3EG association; for ~20 we have new identifications. Spectroscopic confirmation of these candidates is in progress and we have found flat spectrum radio quasars and BL Lac counterparts with redshifts as high as 4. We also find strong evidence for a set of 28 objects with no plausible counterpart like the known EGRET Blazars. These thus represent either a new extragalactic population or a population of Galactic objects with a large scale height. The survey has been extended into the plane, where we find several new blazar candidates; the bulk of the sources are, however, Galactic. Looking ahead to the GLAST era we predict that several of the present 3EG sources are composite and that higher resolution data will break these into multiple Blazar IDs.Comment: 13 pages, 6 figures, submitted to Ap

    A luminosity constraint on the origin of unidentified high energy sources

    Full text link
    The identification of point sources poses a great challenge for the high energy community. We present a new approach to evaluate the likelihood of a set of sources being a Galactic population based on the simple assumption that galaxies similar to the Milky Way host comparable populations of gamma-ray emitters. We propose a luminosity constraint on Galactic source populations which complements existing approaches by constraining the abundance and spatial distribution of any objects of Galactic origin, rather than focusing on the properties of a specific candidate emitter. We use M31 as a proxy for the Milky Way, and demonstrate this technique by applying it to the unidentified EGRET sources. We find that it is highly improbable that the majority of the unidentified EGRET sources are members of a Galactic halo population (e.g., dark matter subhalos), but that current observations do not provide any constraints on all of these sources being Galactic objects if they reside entirely in the disk and bulge. Applying this method to upcoming observations by the Fermi Gamma-ray Space Telescope has the potential to exclude association of an even larger number of unidentified sources with any Galactic source class.Comment: 18 pages, 4 figures, to appear in JPhys
    • 

    corecore