25 research outputs found

    45S5 bioglass-derived glass-ceramic scaffolds containing niobium obtained by gelcasting method

    Get PDF
    Scaffolds of bioglass derived from BG45S5 (45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O and 6 wt% P2O5) containing 10 wt% niobium were prepared by gelcasting method. The scaffolds presented a 3D porous structure with interconnected and spherical pores (pore size range 100 µm to 500 µm) and high porosity (89%), similar to trabecular architecture of spongy bone. The compressive strength was 0.18 ± 0.03 MPa which is acceptable for bone repair applications. The in vitro biological studies showed cytocompatibility for human osteoblastic cells as well tendency for higher alkaline phosphatase activity. Therefore, the findings here suggest the great potential of the scaffolds for using in bone tissue engineering.This work was supported by São Paulo Research Foundation - FAPESP (Grant: 2015-24659-7), National Council for Scientific and Technological Development (Grant: 456461/2014-0) and Erasmus Mundus Program (Be Mundus Project). The authors acknowledge the use of the analytical instrumentation facility at I3S-Instituto de Investigação e Inovação em Saúde (Portugal) and the provision of Nb2O5 by CBMM - Companhia Brasileira de Metalurgia e Mineração

    Nano-hydroxyapatite in oral care cosmetics: characterization and cytotoxicity assessment

    Get PDF
    Nano-hydroxyapatite has been used as an oral care ingredient, being incorporated in several products for the treatment of dental hypersensitivity and enamel remineralisation. Despite its promising results, regulatory and safety concerns have been discussed and questioned by the European Scientific Committee on Consumer Safety (SCCS) regarding the usage of hydroxyapatite nanoparticles in oral care products. In this work, a commercially available nano-hydroxyapatite was characterized and its cytocompatibility towards human gingival fibroblasts was evaluated, as well as its irritation potential using the in vitro HET-CAM assay. All the conditions chosen in this study tried to simulate the tooth brushing procedure and the hydroxyapatite nanoparticles levels normally incorporated in oral care products. The commercial hydroxyapatite nanoparticles used in this study exhibited a rod-like morphology and the expected chemical and phase composition. The set of in vitro cytotoxicity parameters accessed showed that these nanoparticles are highly cytocompatible towards human gingival fibroblasts. Additionally, these nanoparticles did not possess any irritation potential on HET-CAM assay. This study clarifies the issues raised by SCCS and it concludes that this specific nano-hydroxyapatite is cytocompatible, as these nanoparticles did not alter the normal behaviour of the cells. Therefore, they are safe to be used in oral care products.The authors acknowledge the support of the Biointerfaces and Nanotechnology i3S Scientific Platform, as well as Luís Teixeira and Marta Ferro from University of Aveiro for the characterization of the HA-NP with TEM. Financial support from the European Union (FEDER funds POCI/01/0145/FEDER/007265) and National Funds (FCT/MEC, Fundação para a Ciência e Tecnologia and Ministério da Educação e Ciência) under the Partnership Agreement PT2020 UID/QUI/50006/2019 is acknowledged

    Femtosecond laser impact on calcium phosphate bioceramics assessed by micro-Raman spectroscopy and osteoblastic behaviour

    Get PDF
    The present work is an investigation of the biological response to the presence of grooves 3 µm deep, 15 µm wide and spaced by 100 µm, produced with femtosecond laser on ß-tricalcium phosphate (ß-TCP). The heat affected zone generated by the laser irradiation was investigated. Micro-Raman spectroscopy showed a transformation from ß-TCP phase into a-TCP phase, localised inside the grooves. The X Ray Diffraction analyses, correlated with micro-Raman data, confirmed that the use of femtosecond pulsed laser enables to limit the thermal impact. A selection of optimised process parameters allowed to obtain ß-TCP micro-patterned surfaces avoiding any phase transformation. The increase of the wettability with the micro-patterning, compared to smooth surfaces, was highlighted. An improvement of the osteoblastic proliferation was also demonstrated. Finally, the tendency of cell elongation along the grooves direction showed the ability of osteoblastic cells to adapt their morphology to the support topography on which they grow.The authors are grateful to the JECS Trust for funding the visit of Marie Lasgorceix to the Laboratory INEB (Contract N°2015106). Marie Lasgorceix also acknowledges the Walloon Region for financial support, within the “BEWARE” program (convention n°1510392) co-funded by Wallonia and European Union (FP7 – Marie Curie Actions) . The authors are grateful to Dr Sylvain Desprez (Materia Nova, Mons, Belgium) for micro-Raman analyses. This publication is based on the work of COST Action MP1301, funded by COST (European Cooperation in Science and Technology) www.cost.eu

    Influence of PLLA/PCL/HA scaffold fiber orientation on mechanical properties and osteoblast behavior

    Get PDF
    Scaffolds based on aligned and non-aligned poly (L-lactic acid) (PLLA)/polycaprolactone (PCL) fibers obtained by electrospinning, associated to electrosprayed hydroxyapatite (HA) for tissue engineering applications were developed and their performance was compared in terms of their morphology and biological and mechanical behaviors. The morphological results assessed by scanning electron microscopy showed a mesh of PLLA/PCL fibers (random and perfectly aligned) associated with aggregates of nanophased HA. Fourier transform infrared spectrometry confirmed the homogeneity in the blends and the presence of nanoHA in the scaffold. As a result of fiber alignment a 15-fold increase in Young's Modulus and an 8-fold increase in tensile strength were observed when compared to non-aligned fibers. In PLLA/PCL/HA scaffolds, the introduction of nanoHA caused a remarkable improvement of the mechanical strength of this material acting as a reinforcement, enhancing the response of these constructs to tensile stress. In vitro testing was evaluated using osteoblast (MC3T3-E1) cells. The results showed that both fibrous scaffolds were able to support osteoblast cell adhesion and proliferation and that fiber alignment induced increased cellular metabolic activity. In addition, the adhesion and proliferation of Staphylococcus aureus were evaluated and a lower number of colony forming units (CFUs) was obtained in the scaffolds with aligned fibers.Project UID/BIM/04293/2019 by FCT/MCTES through Portuguese Funds

    High in vitro activity of synthetic 5-aminoimidazole-4-carboxamidrazones against Candida biofilms formation on nanohydroxyapatite

    Get PDF
    Comunicação apresentada no: "4th I3S Annual Meeting"Fundação para a Ciência e Tecnologia [PEst-C/QUI/UI0686/2013 (FCOMP-01-0124-FEDER-037302)], PTNMR and a PhD grant awarded to Nádia Senhorães (SFRH/BD/73721/2010)

    Acesso a Tratamento Endovascular para Acidente Vascular Cerebral Isquémico em Portugal

    Get PDF
    Introduction: Since the publication of endovascular treatment trials and European Stroke Guidelines, Portugal has re-organized stroke healthcare. The nine centers performing endovascular treatment are not equally distributed within the country, which may lead to differential access to endovascular treatment. Our main aim was to perform a descriptive analysis of the main treatment metrics regarding endovascular treatment in mainland Portugal and its administrative districts. Material and methods: A retrospective national multicentric cohort study was conducted, including all ischemic stroke patients treated with endovascular treatment in mainland Portugal over two years (July 2015 to June 2017). All endovascular treatment centers contributed to an anonymized database. Demographic, stroke-related and procedure-related variables were collected. Crude endovascular treatment rates were calculated per 100 000 inhabitants for mainland Portugal, and each district and endovascular treatment standardized ratios (indirect age-sex standardization) were also calculated. Patient time metrics were computed as the median time between stroke onset, first-door, and puncture. Results: A total of 1625 endovascular treatment procedures were registered. The endovascular treatment rate was 8.27/100 000 inhabitants/year. We found regional heterogeneity in endovascular treatment rates (1.58 to 16.53/100 000/year), with higher rates in districts closer to endovascular treatment centers. When analyzed by district, the median time from stroke onset to puncture ranged from 212 to 432 minutes, reflecting regional heterogeneity. Discussion: Overall endovascular treatment rates and procedural times in Portugal are comparable to other international registries. We found geographic heterogeneity, with lower endovascular treatment rates and longer onset-to-puncture time in southern and inner regions. Conclusion: The overall national rate of EVT in the first two years after the organization of EVT-capable centers is one of the highest among European countries, however, significant regional disparities were documented. Moreover, stroke-onset-to-first-door times and in-hospital procedural times in the EVT centers were comparable to those reported in the randomized controlled trials performed in high-volume tertiary hospitals.info:eu-repo/semantics/publishedVersio

    Antibacterial activity and biocompatibility of three-dimensional nanostructured porous granules of hydroxyapatite and zinc oxide nanoparticles—anin vitroandin vivostudy

    No full text
    Ceramic scaffolds are widely studied in the bone tissue engineering field due to their potential in regenerative medicine. However, adhesion of microorganisms on biomaterials with subsequent formation of antibiotic-resistant biofilms is a critical factor in implant-related infections. Therefore, new strategies are needed to address this problem. In the present study, three-dimensional and interconnected porous granules of nanostructured hydroxyapatite (nanoHA) incorporated with different amounts of zinc oxide (ZnO) nanoparticles were produced using a simple polymer sponge replication method. As in vitro experiments, granules were exposed to Staphylococcus aureus and Staphylococcus epidermidis and, after 24 h, the planktonic and sessile populations were assessed. Cytocompatibility towards osteoblast-like cells (MG63 cell line) was also evaluated for a period of 1 and 3 days, through resazurin assay and imaging flow cytometry analysis. As in vivo experiments, nanoHA porous granules with and without ZnO nanoparticles were implanted into the subcutaneous tissue in rats and their inflammatory response after 3, 7 and 30 days was examined, as well as their antibacterial activity after 1 and 3 days of S. aureus inoculation. The developed composites proved to be especially effective at reducing bacterial activity in vitro and in vivo for a weight percentage of 2% ZnO, with a low cell growth inhibition in vitro and no differences in the connective tissue growth and inflammatory response in vivo. Altogether, these results suggest that nanoHA-ZnO porous granules have a great potential to be used in orthopaedic and dental applications as a template for bone regeneration and, simultaneously, to restrain biomaterial-associated infections.info:eu-repo/semantics/publishedVersio
    corecore