4 research outputs found

    A genetic geomorphic classification system for Southern African palustrine wetlands: Global implications for the management of wetlands in drylands

    Get PDF
    Due to climatic constraints in dryland regions, wetlands usually occur at confluences of flow paths, whether from surface flow, inter-flow or at locations of groundwater discharge. Long-term landscape processes that shape valleys and focus the movement of water and sediment are accountable for providing a suitable template with which hydrology interacts to allow wetland formation. Current hydrogeomorphic classification systems do not address system-scale linkages of sediment and water transport across the landscape, and are therefore unable to contextualise long-term process dynamics. Misunderstanding long-term earth system processes can result in the application of inappropriate restoration strategies that isolate wetlands from longitudinal drivers of their formation. We propose a genetic classification system that focuses on the mode of wetland formation, and is based on the understanding that genetic processes impact on the outcome hydrology, sedimentology, geomorphology, ecosystem service provision, and long-term dynamics of wetlands in drylands

    Dynamics and Morphodynamic Implications of Chute Channels in Large, Sand-Bed Meandering Rivers

    Get PDF
    Chute channel formation is a key process in the transition from a single-thread meandering to a braided channel pattern, but the physical mechanisms driving the process remain unclear. This research combines GIS and spatial statistical analyses, field survey, Delft3D hydrodynamic and morphodynamic modelling, and Pb-210 alpha-geochronology, to investigate controls on chute initiation and stability, and the role of chute channels in the planform dynamics of large, sand-bed meandering rivers. Sand-bed reaches of four large, tropical rivers form the focus of detailed investigations; the Strickland and Ok Tedi in Papua New Guinea, the Beni in Bolivia, and the lower Paraguay on the Paraguay/Argentina border. Binary logistic regression analysis identifies bend migration style as a key control on chute channel initiation, with most chute channels forming at bends that are subject to a rapid rate of extension (elongation in a direction perpendicular to the valley axis). Bend extension rates are shown to track variation in potential specific stream power, such that reaches and sub-reaches of the rivers studied fit within a planform continuum expressed though increasing bend extension rates and chute initiation frequency, and driven by increasing stream power relative to bedload calibre. Field observations of point bar geomorphology and vegetation dynamics illustrate the importance of rapid bend extension in forming wide sloughs between scroll bars that are aligned with the direction of over-bar flow, and in breaking the continuity of vegetation encroachment on point bars. Bathymetric surveys and Delft3D simulations for the Strickland River provide insight into flow and sediment division at bifurcate meander bends. Coupled with GIS analyses, these simulations show that stable chute channels have higher gradient advantages than chute channels subject to infill, but that upstream and downstream changes in bend orientation can also influence chute stability. The process of bend extension is typically associated with an increase in the chute gradient advantage, further elucidating the role of bend migration style in chute stability. At the reach scale, rivers with higher sediment loads (Qs/Q) are characterised by higher rates of chute infill. Strickland River floodplain sedimentation rates derived through Pb-210 alpha-geochronology are substantially higher adjacent to single-thread bends than adjacent to bifurcate bends, potentially due to an observed increase in channel capacity (and reduction in floodplain inundation frequency) associated with bend bifurcation. Further research is needed to determine whether this observation is significant in light of high uncertainty in the spatial variability of sedimentation rate estimates, but the data presented highlight a need for carefully considered stratified sampling approaches in floodplain coring campaigns, and illustrate the complexity of possible sediment dispersal mechanisms, and associated ecological responses. GIS analysis of the response of the Ok Tedi in Papua New Guinea to direct addition of mine tailings elucidates interplay between channel steepening due to the propagation of a tailings sediment slug, and mid-channel bar formation induced by the increased sediment load, with associated topographic forcing of bend and chute development. A temporal pattern of increased chute initiation frequency on the Ok Tedi mirrors the inter- and intra-reach spatial pattern of chute initiation frequency on the Paraguay, Strickland and Beni Rivers, where increased stream power is associated with increased bend extension and chute initiation rates. The process of chute formation is shown to be rate-dependent, and the threshold value of bend extension for chute initiation is shown to scale with reach-scale stream power, reminiscent of slope-ratio thresholds in river avulsion. However, Delft3D simulations suggest that chute formation can exert negative feedback on shear stress and bank erosion in the adjacent mainstem bifurcate, such that the process of chute formation is also rate-limiting. Chute formation is activated iteratively in space and time in response to changes in river energy, selectively targeting sites of greatest change, and thereby mediating the river response

    Will a rising sea sink some estuarine wetland ecosystems?

    Get PDF
    Sea-level rise associated with climate change presents a major challenge to plant diversity and ecosystem service provision in coastal wetlands. In this study, we investigate the effect of sea-level rise on benthos, vegetation, and ecosystem diversity in a tidal wetland in west Wales, the UK. Present relationships between plant communities and environmental variables were investigated through 50 plots at which vegetation (species and coverage), hydrological (surface or groundwater depth, conductivity) and soil (matrix chroma, presence or absence of mottles, organic content, particle size) data were collected. Benthic communities were sampled at intervals along a continuum from saline to freshwater. To ascertain future changes to the wetlands' hydrology, a GIS-based empirical model was developed. Using a LiDAR derived land surface, the relative effect of peat accumulation and rising sea levels were modelled over 200 years to determine how frequently portions of the wetland will be inundated by mean sea level, mean high water spring and mean high water neap conditions. The model takes into account changing extents of peat accumulation as hydrological conditions alter

    Dynamics and morphodynamic implications of chute channels in large, sand-bed meandering rivers

    No full text
    Chute channel formation is a key process in the transition from a single-thread meandering to a braided channel pattern, but the physical mechanisms driving the process remain unclear. This research combines GIS and spatial statistical analyses, field survey, Delft3D hydrodynamic and morphodynamic modelling, and Pb-210 alpha-geochronology, to investigate controls on chute initiation and stability, and the role of chute channels in the planform dynamics of large, sand-bed meandering rivers. Sand-bed reaches of four large, tropical rivers form the focus of detailed investigations; the Strickland and Ok Tedi in Papua New Guinea, the Beni in Bolivia, and the lower Paraguay on the Paraguay/Argentina border. Binary logistic regression analysis identifies bend migration style as a key control on chute channel initiation, with most chute channels forming at bends that are subject to a rapid rate of extension (elongation in a direction perpendicular to the valley axis). Bend extension rates are shown to track variation in potential specific stream power, such that reaches and sub-reaches of the rivers studied fit within a planform continuum expressed though increasing bend extension rates and chute initiation frequency, and driven by increasing stream power relative to bedload calibre. Field observations of point bar geomorphology and vegetation dynamics illustrate the importance of rapid bend extension in forming wide sloughs between scroll bars that are aligned with the direction of over-bar flow, and in breaking the continuity of vegetation encroachment on point bars. Bathymetric surveys and Delft3D simulations for the Strickland River provide insight into flow and sediment division at bifurcate meander bends. Coupled with GIS analyses, these simulations show that stable chute channels have higher gradient advantages than chute channels subject to infill, but that upstream and downstream changes in bend orientation can also influence chute stability. The process of bend extension is typically associated with an increase in the chute gradient advantage, further elucidating the role of bend migration style in chute stability. At the reach scale, rivers with higher sediment loads (Qs/Q) are characterised by higher rates of chute infill. Strickland River floodplain sedimentation rates derived through Pb-210 alpha-geochronology are substantially higher adjacent to single-thread bends than adjacent to bifurcate bends, potentially due to an observed increase in channel capacity (and reduction in floodplain inundation frequency) associated with bend bifurcation. Further research is needed to determine whether this observation is significant in light of high uncertainty in the spatial variability of sedimentation rate estimates, but the data presented highlight a need for carefully considered stratified sampling approaches in floodplain coring campaigns, and illustrate the complexity of possible sediment dispersal mechanisms, and associated ecological responses. GIS analysis of the response of the Ok Tedi in Papua New Guinea to direct addition of mine tailings elucidates interplay between channel steepening due to the propagation of a tailings sediment slug, and mid-channel bar formation induced by the increased sediment load, with associated topographic forcing of bend and chute development. A temporal pattern of increased chute initiation frequency on the Ok Tedi mirrors the inter- and intra-reach spatial pattern of chute initiation frequency on the Paraguay, Strickland and Beni Rivers, where increased stream power is associated with increased bend extension and chute initiation rates. The process of chute formation is shown to be rate-dependent, and the threshold value of bend extension for chute initiation is shown to scale with reach-scale stream power, reminiscent of slope-ratio thresholds in river avulsion. However, Delft3D simulations suggest that chute formation can exert negative feedback on shear stress and bank erosion in the adjacent mainstem bifurcate, such that the process of chute formation is also rate-limiting. Chute formation is activated iteratively in space and time in response to changes in river energy, selectively targeting sites of greatest change, and thereby mediating the river response.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore