7 research outputs found

    Sub-chronic toxicity study in rats orally exposed to nanostructured silica

    Get PDF
    Synthetic Amorphous Silica (SAS) is commonly used in food and drugs. Recently, a consumer intake of silica from food was estimated at 9.4 mg/kg bw/day, of which 1.8 mg/kg bw/day was estimated to be in the nano-size range. Food products containing SAS have been shown to contain silica in the nanometer size range (i.e. 5 – 200 nm) up to 43% of the total silica content. Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured silica

    Use of the local lymph node assay in assessment of immune function

    No full text
    The murine local lymph node assay (LLNA) was originally developed as a predictive test method for the identification of chemicals with sensitizing potential. In this study we demonstrated that an adapted LLNA can also be used as an immune function assay by studying the effects of orally administered immunomodulating compounds on the T-cell-dependent immune response induced by the contact sensitizer 2,4-dinitrochlorobenzene (DNCB). C57Bl/6 mice were treated with the immunotoxic compounds cyclosporin A (CsA), bis(tri-n-butyltin)oxide (TBTO) or benzo[a]pyrene, (B[a]P). Subsequently, cell proliferation and interferon-gamma (IFN-gamma) and interleukin (IL)-4 release were determined in the auricular lymph nodes (LNs) after DNCB application on both ears. Immunosuppression induced by CsA, TBTO and B[a]P was clearly detectable in this application of the LLNA. Cytokine release measurements proved valuable to confirm the results of the cell proliferation assay and to obtain an indication of the effect on Th1/Th2 balance. We believe to have demonstrated the applicability of an adapted LLNA as an immune function assay in the mouse

    Evaluation of immunomodulation by Lactobacillus casei Shirota: Immune function, autoimmunity and gene expression

    No full text
    Lactic acid bacteria are claimed to have immunomodulating effects. Stimulation as well as suppression of T helper (Th)1 mediated immune responses, have been described for various strains. Experiments involving Lactobacillus casei Shirota (LcS) detected mainly enhancement of innate immune responses and promotion of Th1 mediated immune reactivity. To confirm and further investigate modulation of Th1 responses and development of autoimmune disease by consequences, the effects of oral administration of LcS were assessed in several experiments. The effect of LcS varied between the different models. No modulation was found in the mitogen-induced cell proliferation and cytokine release assays in mesenteric lymph nodes of Wistar rats. LcS inhibited the Th1 mediated immune response in an adapted murine Local Lymph Node Assay (LLNA) in BALB/c mice, whereas experimental autoimmune encephalomyelitis (EAE) in Lewis rats was aggravated. These varying effects on Th1 responses indicate that beneficial as well as harmful effects on immune related disorders could occur after LcS consumption. Since microarray analysis is suggested to be more sensitive and predictive than functional tests, gene expression profiling was included as an alternative endpoint in the testing of immunomodulation. The detected gene expression profiles did not reflect the effects of LcS on the immune system. Microarray analysis may therefore have no more predictive value than immune function assays when investigating immunomodulation by probiotics. To gain further insight into effects of probiotics on immune function, experiments including cytokine assays and gene expression analysis combined with disease models could be useful

    Evaluation of immunomodulation by lactobacillus casei shirota: immune function, autoimmunity and gene expression

    No full text
    Lactic acid bacteria are claimed to have immunomodulating effects. Stimulation as well as suppression of T helper (Th)1 mediated immune responses, have been described for various strains. Experiments involving Lactobacillus casei Shirota (LcS) detected mainly enhancement of innate immune responses and promotion of Th1 mediated immune reactivity. To confirm and further investigate modulation of Th1 responses and development of autoimmune disease by LcS, the consequences of oral administration of LcS were assessed in several experiments. The effect of LcS varied between the different models. No modulation was found in the mitogen-induced cell proliferation and cytokine release assays in mesenteric lymph nodes of Wistar rats. LcS inhibited the Th1 mediated immune response in an adapted murine Local Lymph Node Assay (LLNA) in BALB/c mice, whereas experimental autoimmune encephalomyelitis (EAE) in Lewis rats was aggravated. These varying effects on Th1 responses indicate that beneficial as well as harmful effects on immune related disorders could occur after LcS consumption. Since microarray analysis is suggested to be more sensitive and predictive than functional tests, gene expression profiling was included as an alternative endpoint in the testing of immunomodulation. The detected gene expression profiles did not reflect the effects of LcS on the immune system. Microarray analysis may therefore have no more predictive value than immune function assays when investigating immunomodulation by probiotics. To gain further insight into effects of probiotics on immune function, experiments including cytokine assays and gene expression analysis combined with disease models could be usefu
    corecore