69 research outputs found

    A fast current-driven instability in relativistic collisionless shocks

    Full text link
    We report here on a fast current-driven instability at relativistic collisionless shocks, triggered by the perpendicular current carried by the supra-thermal particles as they gyrate around the background magnetic field in the shock precursor. We show that this instability grows faster than any other instability studied so far in this context, and we argue that it is likely to shape the physics of the shock and of particle acceleration in a broad parameter range.Comment: 6 pages, 5 figures -- version to appear in EP

    Origins of plateau formation in ion energy spectra under target normal sheath acceleration

    Full text link
    Target normal sheath acceleration (TNSA) is a method employed in laser--matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of order 10 μ\mathrm{\mu}m. In this paper we identify a mechanism which explains this phenomenon using one dimensional particle-in-cell simulations. Fast electrons generated from the laser interaction recirculate back and forth through the target, giving rise to time-oscillating charge and current densities at the target backside. Periodic decreases in the electron density lead to transient disruptions of the TNSA sheath field: peaks in the ion spectra form as a result, which are then spread in energy from a modified potential driven by further electron recirculation. The ratio between the laser pulse duration and the recirculation period (dependent on the target thickness, including the portion of the pre-plasma which is denser than the critical density) determines if a plateau forms in the energy spectra.Comment: 11 pages, 12 figure

    Particle acceleration at magnetized, relativistic turbulent shock fronts

    Full text link
    The efficiency of particle acceleration at shock waves in relativistic, magnetized astrophysical outflows is a debated topic with far-reaching implications. Here, for the first time, we study the impact of turbulence in the pre-shock plasma. Our simulations demonstrate that, for a mildly relativistic, magnetized pair shock (Lorentz factor γsh2.7\gamma_{\rm sh} \simeq 2.7, magnetization level σ0.01\sigma \simeq 0.01), strong turbulence can revive particle acceleration in a superluminal configuration that otherwise prohibits it. Depending on the initial plasma temperature and magnetization, stochastic-shock-drift or diffusive-type acceleration governs particle energization, producing powerlaw spectra dN/dγγs\mathrm{d}N/\mathrm{d}\gamma \propto \gamma^{-s} with s2.53.5s \sim 2.5-3.5. At larger magnetization levels, stochastic acceleration within the pre-shock turbulence becomes competitive and can even take over shock acceleration

    Origin of intense electron heating in relativistic blast waves

    Full text link
    The modeling of gamma-ray burst afterglow emission bears witness to strong electron heating in the precursor of Weibel-mediated, relativistic collisionless shock waves propagating in unmagnetized electron-ion plasmas. In this Letter, we propose a theoretical model, which describes electron heating via a Joule-like process caused by pitch-angle scattering in the decelerating, self-induced microturbulence and the coherent charge-separation field induced by the difference in inertia between electrons and ions. The emergence of this electric field across the precursor of electron-ion shocks is confirmed by large-scale particle-in-cell (PIC) simulations. Integrating the model using a Monte Carlo-Poisson method, we compare the main observables to the PIC simulations to conclude that the above mechanism can indeed account for the bulk of electron heating.Comment: 9 pages, 8 figures; to be published in Astrophysical Journal Letter

    The various manifestations of collisionless dissipation in wave propagation

    Full text link
    The propagation of an electrostatic wave packet inside a collisionless and initially Maxwellian plasma is always dissipative because of the irreversible acceleration of the electrons by the wave. Then, in the linear regime, the wave packet is Landau damped, so that in the reference frame moving at the group velocity, the wave amplitude decays exponentially with time. In the nonlinear regime, once phase mixing has occurred and when the electron motion is nearly adiabatic, the damping rate is strongly reduced compared to the Landau one, so that the wave amplitude remains nearly constant along the characteristics. Yet, we show here that the electrons are still globally accelerated by the wave packet, and, in one dimension, this leads to a non local amplitude dependence of the group velocity. As a result, a freely propagating wave packet would shrink, and, therefore, so would its total energy. In more than one dimension, not only does the magnitude of the group velocity nonlinearly vary, but also its direction. In the weakly nonlinear regime, when the collisionless damping rate is still significant compared to its linear value, this leads to an effective defocussing effect which we quantify, and which we compare to the self-focussing induced by wave front bowing.Comment: 23 pages, 6 figure
    corecore