15 research outputs found

    Screening method for the determination of tetracyclines and fluoroquinolones in animal drinking water by liquid chromatography with diode array detector

    No full text
    A liquid chromatography - diode array detector (HPLC-DAD) procedure has been developed for the determination of oxytetracycline (OTC), tetracycline (TC), chlorotetracycline (CTC), doxycyc-line (DC), enrofloxacin (ENR), ciprofloxacin (CIP), sarafloxacin (SAR) and flumequine (FLU) residues in animal drinking water. This method was applied to animal drinking water. Solid-phase extraction (SPE) clean-up on an Oasis HLB cartridge allowed an extract suitable for liquid chromatographic analysis to be obtained. Chromatographic separation was carried out on a C18 analytical column, using gradient elution with 0.1% trifluoroacetic acid - acetonitrile - methanol at 30oC. The flow-rate was 0.7 mL/min and the eluate was analysed at 330 nm. The whole procedure was evaluated according to the requirements of the Commission Decision 2002/657/EC, determining specificity, decision limit (CCa), detection capacity (CCß), limit of detection (LOD), limit of quantification (LOQ), precision and accuracy during validation of the method. The recoveries of TCs and FQs from spiked samples at the levels of 10, 100 and 1000 ^g/L were higher than 82%. The developed method based on HPLC-DAD has been applied for the determination of four tetracyclines and four fluoroquinolones in animal drinking water samples

    Natural background radiation at Lab 2 of Callio Lab, Pyhäsalmi mine in Finland

    No full text
    Abstract In operating mines, as well as in deep locations for planned scientific activities, it is essential to recognize the natural background radiation from the point of view of both occupational hazard and experimental background. Callio Lab, located in the Pyhäsalmi Mine, Finland, is one of the underground laboratories participating in the Baltic Sea Underground Innovation Network (BSUIN). The characterization of the natural background radiation was done at the Lab 2, which is the deepest located in Callio Lab. It involved in-situ gamma spectrometry, thermal neutron flux measurements, radon concentration determination, and α / β laboratory spectrometry of water and rock samples. At a depth of 1436 m (~4000 m w.e.) within the felsic volcanic bedrock occurs a volcanogenic massive sulphide deposit, wherein a thermal neutron flux of (1.73 ± 0.10) × 10−5 cm−2s−1, a gamma-ray flux of 12.7 ± 1.5 cm−2s−1, a gamma-ray dose of 0.158 ± 0.029 μ Sv/h and a radon concentration of 213.3 Bq/m³ ± 11% were determined
    corecore