85 research outputs found

    CDK-inhibitor independent cell cycle progression in an experimental haematopoietic stem cell leukaemia despite unaltered Rb-phosphorylation

    Get PDF
    A CD34-negative haematopoietic progenitor cell line, D064, derived from canine bone marrow stromal cells is able to differentiate into haematopoietic progenitors under the influence of growth factor-mediated signalling. While differentiating, these cells eventually start to express MHC class II molecules (DR homologues) on their surface. The stable transfection of the fibroblast-like wild-type cells with retroviral constructs containing the cDNA for the canine MHC class II DR-genes (DRA and DRB) induces a change in morphology, accelerates cell cycle progression and leads to a loss of anchorage-dependent growth. Transfected cells show features of an immature stem cell leukaemia, such as giant cell formation. In wild-type D064 cells the accumulation of the cyclin-dependent kinase inhibitor (cdki) p27kip-1 induces differentiation, which is dependent upon signalling via the ligand for the tyrosine kinase receptor c-kit (stem cell factor). DR-transfected cells instead apparently grow independently of any growth factor-mediated signals and express high levels of the cdkis p27kip-1 and especially p21waf-1/cip-1, concurrently with accelated cell cycle progression. In contrast to the overexpression of cdkis and despite accelerated cell cycle progression, the expression of the G2/M phase transition kinase p34cdc2 is significantly reduced in DR-transfected and transformed cells as compared to the haematopoietic wild-type cell line D064. This might suggest a possible alternative cell cycle progression pathway in this experimental stem cell leukaemia by by-passing the G0/G1 phase arrest, although retinoblastoma (Rb)-phosphorylation remains unaltered. These results provide evidence that mechanisms normally controlling the cell cycle and early haematopoietic differentiation are disrupted by the constitutive transcription and expression of MHC class II genes (DR) leading to a progression and growth of this experimental stem cell leukaemia independent from cell cycle controlling regulators such as p27 and p21. © 1999 Cancer Research Campaig

    Acute graft versus host disease

    Get PDF
    Acute graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. Activated donor T cells damage host epithelial cells after an inflammatory cascade that begins with the preparative regimen. About 35%–50% of hematopoietic stem cell transplant (HSCT) recipients will develop acute GVHD. The exact risk is dependent on the stem cell source, age of the patient, conditioning, and GVHD prophylaxis used. Given the number of transplants performed, we can expect about 5500 patients/year to develop acute GVHD. Patients can have involvement of three organs: skin (rash/dermatitis), liver (hepatitis/jaundice), and gastrointestinal tract (abdominal pain/diarrhea). One or more organs may be involved. GVHD is a clinical diagnosis that may be supported with appropriate biopsies. The reason to pursue a tissue biopsy is to help differentiate from other diagnoses which may mimic GVHD, such as viral infection (hepatitis, colitis) or drug reaction (causing skin rash). Acute GVHD is staged and graded (grade 0-IV) by the number and extent of organ involvement. Patients with grade III/IV acute GVHD tend to have a poor outcome. Generally the patient is treated by optimizing their immunosuppression and adding methylprednisolone. About 50% of patients will have a solid response to methylprednisolone. If patients progress after 3 days or are not improved after 7 days, they will get salvage (second-line) immunosuppressive therapy for which there is currently no standard-of-care. Well-organized clinical trials are imperative to better define second-line therapies for this disease. Additional management issues are attention to wound infections in skin GVHD and fluid/nutrition management in gastrointestinal GVHD. About 50% of patients with acute GVHD will eventually have manifestations of chronic GVHD

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation

    Editorial: Cellular Therapies: Past, Present and Future

    No full text
    corecore