2 research outputs found

    Ciliate Communities Respond via Their Traits to a Wastewater Treatment Plant With a Combined UASB-Activated Sludge System

    Get PDF
    Assessing functional diversity of communities is an efficient method to link community composition to ecosystem quality. Still, studies using functional traits of microeukaryote ciliate communities in biological wastewater treatment plants are lacking. The present work explores the functional diversity of the ciliate protist community in a wastewater treatment plant (WWTP) operating with a combined UASB-activated sludge system, and specifically to: 1) investigate the taxonomic and functional composition of the ciliate communities over time; 2) compare taxonomic and functional diversity indices with regard to its applicability in WWPS; 3) assess the relationship between the ciliate community's functional composition and the WWTPs temporal conditions; and 4) investigate the potential use of functional diversity as an indicator of WWTP efficiency. Totally, we recorded 21 ciliate species throughout 37 samplings. The number of species was low compared to other plants. Bacterivorous and flake-forming species were the main functional strategies found in the samples. The correlation between taxonomic and functional richness was significant, indicating a functionally redundant community. There was a correlation between the Simpson and Rao's quadratic entropy indexes suggesting that loss of taxonomic diversity leads to a loss of functional diversity. The homogeneity of the measured physical and chemical data led to functional homogenization and redundancy (homogenous CWM) of the ciliate community. The functional diversity is positively correlated with parameters of removal efficiency, indicating a promising application in WWTPs. Future studies will broaden knowledge on functional diversity in biological wastewater treatment systems, this being a first step with the unprecedented application of this methodology in artificial ecosystems.Peer reviewe

    First report of predation of Giardia Sp Cysts by Ciliated Protozoa and confirmation of predation of cryptosporidium Spp. Oocysts by ciliate species

    No full text
    Ciliated protozoa are important components of the microbial food web in various habitats, especially aquatic environments. These organisms are useful bioindicators for both environmental quality assessment and the wastewater purification process. The pathogenic parasitic protozoan species Giardia and Cryptosporidium represent a significant concern for human health, being responsible for numerous disease outbreaks worldwide. The predation of cysts and oocysts in 15 ciliate species from water and sewage samples collected in Campinas, So Paulo, Brazil were verified under laboratory conditions. The ciliated protozoan species were selected based on their mode of nutrition, and only bacterivorous and suspension-feeders were considered for the experiments. The species Blepharisma sinuosum, Euplotes aediculatus, Sterkiella cavicola, Oxytricha granulifera, Vorticella infusionum, Spirostomum minus, and Stentor coeruleus ingested cysts and oocysts, the resistance forms of Giardia spp. and Cryptosporidium spp., respectively. This is the first time that the ingestion of Giardia cysts by ciliated protozoa has been reported. These findings may contribute to a better understanding of the biological removal of these pathogens from aquatic environments23111135711362COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPsem informação2010/16222-4; 2011/50244
    corecore