9,345 research outputs found

    Thermalization through Hagedorn states - the importance of multiparticle collisions

    Full text link
    Quick chemical equilibration times of hadrons within a hadron gas are explained dynamically using Hagedorn states, which drive particles into equilibrium close to the critical temperature. Within this scheme master equations are employed for the chemical equilibration of various hadronic particles like (strange) baryon and antibaryons. A comparison of the Hagedorn model to recent lattice results is made and it is found that for both Tc =176 MeV and Tc=196 MeV, the hadrons can reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found in thermal fits for a hadron gas without Hagedorn states.Comment: 8 pages, 3 figures, talk presented at the International Conference on Strangeness in Quark Matter, Buzios, Rio de Janeiro, Brazil, Sept. 27 - Oct. 2, 200

    The Characteristics of Magnetic CVs in the Period Gap

    Get PDF
    We have observed several magnetic cataclysmic variables located in the range between 2 and 3 hours, known as the period gap. This work was prompted by the recent discovery of RX J1554.2+2721. It has 2.54 hours orbital period and shows almost pure cyclotron continuum in a low luminosity state, similar to HS1023+3900, HS0922+1333 and RBS206. These are low accretion rate polars (LARPs) known to have mass transfer rates of order of a few 10^-13Msun/year. The aim of the study was to find out, if magnetic systems filling the period gap are in any way different from their counterparts outside that range of periods. The only significant difference we encounter, is much higher number of asynchronous magnetic systems to-wards longer periods than below the gap.Comment: 7 pages, 7 figures, To appear in `Magnetic Cataclysmic Variables', IAU Col. 190 (Cape Town), eds. M. Cropper & S. Vrielman

    Optical tuning of the scattering length of cold alkaline earth atoms

    Full text link
    It is possible to tune the scattering length for the collision of ultra-cold 1S0 ground state alkaline-earth atoms using an optical Feshbach resonance. This is achieved with a laser far detuned from an excited molecular level near the frequency of the atomic intercombination 1S0--3P1 transition. Simple resonant scattering theory, illustrated by the example of 40Ca, allows an estimate of the magnitude of the effect. Unlike alkali metal species, large changes of the scattering length are possible while atom loss remains small, because of the very narrow line width of the molecular photoassociation transition. This raises prospects for control of atomic interactions for a system without magnetically tunable Feshbach resonance levels

    The Discovery of Quasisoft and Supersoft Sources in External Galaxies

    Full text link
    We apply a uniform procedure to select very soft sources from point sources observed by Chandra in 4 galaxies. This sample includes one elliptical galaxy (NGC 4967), 2 face-on spirals (M101 and M83), and an interacting galaxy (M51). We have found very soft X-ray sources (VSSs) in every galaxy. Some of these fit the criteria for canonical supersoft sources (SSSs), while others are somewhat harder. These latter have characteristic values of kT < 300 eV; we refer to them as quasisoft sources (QSSs). We found a combined total of 149 VSSs in the 4 galaxies we considered; 77 were SSSs and 72 were QSSs. (See the paper for the original long abstract)Comment: 20 pages, 6 figures. Accepted for publication in Ap

    Time-dependent Hartree-Fock studies of superheavy molecules

    Get PDF
    The time dependent Hartree-Fock approximation is used to study the dynamical formation of long-lived superheavy nuclear complexes. The effects of long-range Coulomb polarization are treated in terms of a classical quadrupole polarization model. Our calculations show the existence of "resonantlike" structures over a narrow range of bombarding energies near the Coulomb barrier. Calculations of 238U + 238U are presented and the consequences of these results for supercritical positron emission are discussed. NUCLEAR REACTIONS 238U + 238U collisions as a function of bombarding energy, in the time-dependent Hartree-Fock approximation. Superheavy molecules and strongly damped collisions
    • …
    corecore