8,369 research outputs found
Solutions to the 1d Klein-Gordon equation with cutoff Coulomb potentials
In a recent paper by Barton (J. Phys. A40, 1011 (2007)), the 1-dimensional
Klein-Gordon equation was solved analytically for the non-singular Coulomb-like
potential V_1(|x|) = -\alpha/(|x|+a). In the present paper, these results are
completely confirmed by a numerical formulation that also allows a solution for
an alternative cutoff Coulomb potential V_2(|x|) = -\alpha/|x|, ~|x| > a, and
otherwise V_2(|x|) = -\alpha/a.Comment: 8 pages, 4 figure
Relativistic Comparison Theorems
Comparison theorems are established for the Dirac and Klein--Gordon
equations. We suppose that V^{(1)}(r) and V^{(2)}(r) are two real attractive
central potentials in d dimensions that support discrete Dirac eigenvalues
E^{(1)}_{k_d\nu} and E^{(2)}_{k_d\nu}. We prove that if V^{(1)}(r) \leq
V^{(2)}(r), then each of the corresponding discrete eigenvalue pairs is ordered
E^{(1)}_{k_d\nu} \leq E^{(2)}_{k_d\nu}. This result generalizes an earlier more
restrictive theorem that required the wave functions to be node free. For the
the Klein--Gordon equation, similar reasoning also leads to a comparison
theorem provided in this case that the potentials are negative and the
eigenvalues are positive.Comment: 6 page
Design considerations in mechanical face seals for improved performance. 2: Lubrication
The importance of sealing technology in our industrial, chemical-oriented society in regard to maintenance and environmental contamination is pointed out. It is stated that seal performance (leakage, life) is directly related to seal lubrication. Current thinking in regard to seal lubrication is reviewed; the effect of energy dissipation in the thin lubricating film separating the sealing faces is pointed out, and the results of vaporization due to heating are illustrated. Also, hydrodynamic lubrication is reviewed, and an inherent tendency for the seal to operate with angular misalignment is shown. Recent work on hydrostatic effects is summarized and the conditions for seal instability are discussed. Four different modes of seal lubrication are postulated with the mode type being a strong function of speed and pressure
Numerical analysis of nanostructures for enhanced light extraction from OLEDs
Nanostructures, like periodic arrays of scatters or low-index gratings, are
used to improve the light outcoupling from organic light-emitting diodes
(OLED). In order to optimize geometrical and material properties of such
structures, simulations of the outcoupling process are very helpful. The finite
element method is best suited for an accurate discretization of the geometry
and the singular-like field profile within the structured layer and the
emitting layer. However, a finite element simulation of the overall OLED stack
is often beyond available computer resources. The main focus of this paper is
the simulation of a single dipole source embedded into a twofold infinitely
periodic OLED structure. To overcome the numerical burden we apply the Floquet
transform, so that the computational domain reduces to the unit cell. The
relevant outcoupling data are then gained by inverse Flouqet transforming. This
step requires a careful numerical treatment as reported in this paper
Design considerations in mechanical face seals for improved performance. 1: Basic configurations
Basic assembly configurations of the mechanical face seal are described and some advantages associated with each are listed. The various forms of seal components are illustrated, and functions pointed out. The technique of seal pressure balancing and its application are described; and the concept of the PV factor, its different forms and limitations are discussed. Brief attention is given to seal lubrication since it is covered in detail in a companion paper. Finally, the operating conditions for various applications of low pressure seals (aircraft transmissions) are listed, and the seal failure mode of a particular application is discussed
Challenge Patient Dispatching in Mass Casualty Incidents
Efficient management of mass casualty incidents is complex, since regular emergency medical services struc-tures have to be switched to a temporary “disaster mode” involving additional operational and tactical struc-tures. Most of the relevant decisions have to be taken on-site in a provisional and chaotic environment. Data gathering about affected persons is one side of the coin; the other side is on-site patient dispatching requiring information exchange with the regular emergency call center and destination hospitals. In this paper we extend a previous conference contribution about the research project e-Triage to the aspect of patient data and on-site patient dispatching. Our considerations reflect the situation in Germany, which deserves from our point of view substantial harmonization
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
A two-fluid model developed originally to describe wave oscillations in the
vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and
confined plasma column, is applied to interpret plasma oscillations in a RF
generated linear magnetised plasma (WOMBAT), with similar density and field
strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower
normalised rotation frequency, lower temperature and lower axial velocity.
Despite these differences, the two-fluid model provides a consistent
description of the WOMBAT plasma configuration and yields qualitative agreement
between measured and predicted wave oscillation frequencies with axial field
strength. In addition, the radial profile of the density perturbation predicted
by this model is consistent with the data. Parameter scans show that the
dispersion curve is sensitive to the axial field strength and the electron
temperature, and the dependence of oscillation frequency with electron
temperature matches the experiment. These results consolidate earlier claims
that the density and floating potential oscillations are a resistive drift
mode, driven by the density gradient. To our knowledge, this is the first
detailed physics model of flowing plasmas in the diffusion region away from the
RF source. Possible extensions to the model, including temperature
non-uniformity and magnetic field oscillations, are also discussed
- …