5,589 research outputs found

    Charmonium Suppression with cc~ Dissociation by Strings

    Full text link
    We study the production of cc~ pairs in nuclear reactions at SPS energies within the covariant transport approach HSD. The production of cc~ is treated perturbatively employing experimental cross sections while the interactions of cc~ pairs with baryons are included by conventional cascade-type two-body collisions. Adopting 6 mb for the cc~-baryon cross sections the data on J/\Psi suppression in p+A reactions are reproduced in line with calculations based on the Glauber model. Additionally the dissociation of the cc~ pairs by strings is included in a purely geometrical way. We find good agreement with experimental data from the NA38 and NA50 collaboration with an estimate for the string radius of ~0.2-0.3 fm.Comment: 9 pages (LaTeX), 5 PS figure

    Color plasma oscillation in strangelets

    Get PDF
    The dispersion relation and damping rate of longitudinal color plasmons in finite strange quark matter (strangelets) are evaluated in the limits of weak coupling, low temperature, and long wavelength. The property of the QCD vacuum surrounding a strangelet makes the frequency of the plasmons nearly the same as the color plasma frequency of bulk matter. The plasmons are damped by their coupling with individual excitations of particle-hole pairs of quarks, of which the energy levels are discretized by the boundary. For strangelets of macroscopic size, the lifetime of the plasmons is found to be proportional to the size, as in the case of the usual plasma oscillations in metal nanoparticles.Comment: 9 pages (REVTeX), 2 Postscript figures, to be published in Phys. Rev.

    ISM studies of GRB 030329 with high resolution spectroscopy

    Get PDF
    We present a series of early UVES/VLT high resolution spectra of the afterglow of GRB 030329 at redshift z=0.16867+-0.00001. In contrast to other spectra from this burst, both emission and absorption lines were detected. None of them showed any temporal evolution. From the emission lines, we determine the properties of the host galaxy which has a star formation rate (SFR) of 0.198 M_solar yr^-1 and a low metallicity of 1/7 Z_solar. Given the low total stellar host mass M_star=10^7.75+-0.15 M_solar and an absolute luminosity m_V=-16.37, we derive specific SFRs (SSFR) of log SFR/M = -8.5 yr^-1 and SFR/L = 14.1 M_solar yr^-1 L_*^-1. This fits well into the picture of GRB hosts as being low mass, low metallicity, actively star forming galaxies. The MgII and MgI absorption lines from the host show multiple narrow (Doppler width b=5-10 km/s) components spanning a range of v about 260 km/s, mainly blueshifted compared to the redshift from the emission lines. These components are likely probing outflowing material of the host galaxy, which could arise from former galactic superwinds, driven by supernovae from star forming regions. Similar features have been observed in QSO spectra. The outflowing material is mainly neutral with high column densities of log N(MgII)=14.0+-0.1 cm^-2 and log N(MgI)=12.3+-0.1 cm^-2.Comment: 11 pages, 4 figures, submitted to Ap

    Colour-singlet strangelets at finite temperature

    Full text link
    Considering massless uu and dd quarks, and massive (150 MeV) ss quarks in a bag with the bag pressure constant B1/4=145B^{1/4} = 145 MeV, a colour-singlet grand canonical partition function is constructed for temperatures T=130T = 1-30 MeV. Then the stability of finite size strangelets is studied minimizing the free energy as a function of the radius of the bag. The colour-singlet restriction has several profound effects when compared to colour unprojected case: (1) Now bulk energy per baryon is increased by about 250250 MeV making the strange quark matter unbound. (2) The shell structures are more pronounced (deeper). (3) Positions of the shell closure are shifted to lower AA-values, the first deepest one occuring at A=2A=2, famous HH-particle ! (4) The shell structure at A=2A=2 vanishes only at T30T\sim 30 MeV, though for higher AA-values it happens so at T20T\sim 20 MeV.Comment: Revtex file(8 pages)+6 figures(ps files) available on request from first Autho

    Production Efficiency of Ultracold Feshbach Molecules in Bosonic and Fermionic Systems

    Get PDF
    We investigate the production efficiency of ultracold molecules in bosonic 85^{85}Rb and fermionic 40^{40}K when the magnetic field is swept across a Feshbach resonance. For adiabatic sweeps of the magnetic field, the conversion efficiency of each species is solely determined by the phase space density of the atomic cloud, in contrast to a number of theoretical predictions. Our novel model for the adiabatic pairing process, developed from general physical principles, accurately predicts the conversion efficiency for {\it both} ultracold gases of bosons and of fermions. In the non-adiabatic regime our measurements of the 85^{85}Rb molecule conversion efficiency follow a Landau Zener model, with a conversion efficiency that is characterized by the density divided by the time derivative of the magnetic field.Comment: 5 pages, 3 figure

    Charge and critical density of strange quark matter

    Full text link
    The electric charge of strange quark matter is of vital importance to experiments. A recent investigation shows that strangelets are most likely highly negatively charged, rather than slightly positively charged as previously believed. Our present study indicates that negative charges can indeed lower the critical density, and thus be favorable to the experimental searches in heavy ion collisions. However, too much negative charges can make it impossible to maintain flavor equilibrium.Comment: 4 pages, LATeX with REVTeX style, one PS figure. To be published in Phys. Rev. C 59(6), 199

    Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    Full text link
    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the pQCD based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3-8 compared to elastic scatterings. The shear viscosity scales with the coupling as 1/(alpha_s^2\log(1/alpha_s)). For a constant coupling constant the shear viscosity to entropy density ratio has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.Comment: 17 pages, 5 figure

    Solving the two-center nuclear shell-model problem with arbitrarily-orientated deformed potentials

    Full text link
    A general new technique to solve the two-center problem with arbitrarily-orientated deformed realistic potentials is demonstrated, which is based on the powerful potential separable expansion method. As an example, molecular single-particle spectra for 12^{12}C + 12^{12}C \to 24^{24}Mg are calculated using deformed Woods-Saxon potentials. These clearly show that non-axial symmetric configurations play a crucial role in molecular resonances observed in reaction processes for this system at low energy
    corecore